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Abstract
Using earlier work of Sá Earp and the author [SW15] we construct an irreducible unobstructed

G2–instanton on an SO(3)–bundle over a twisted connected sum G2–manifold recently dis-

covered by Crowley and Nordström [CN14].

Changes to the published version A former version of this article has been published in Mathe-

matical Research Letters, Volume 23, Issue 2, pp. 529–544 (2016). The present version is identical

to the published article, except for aesthetic changes and the addition of a paragraph in Section 2.3

justifying the application of [Moı̆67, Theorem 7.5] in more detail.

1 Introduction

In order to put this note into context and help the reader appreciate its signi�cance, we (very)

brie�y recall some ideas from the study of gauge theory on G2–manifolds.

De�nition 1.1. A connection A ∈ A(E) on a G–bundle E over a G2–manifold Y is called a G2–
instanton if its curvature satis�es

(1.2) FA ∧ψ = 0

withψ B ∗ϕ and ϕ ∈ Ω3(Y ) denoting the G2–structure on Y .

In their visionary article [DT98] Donaldson and Thomas speculated that “counting” G2–

instantons might lead to an interesting enumerative invariant. Although almost two decades

have passed, it is still not understood what the precise de�nition of this invariant ought to be;

however, see Donaldson and Segal [DS11], the author [Wal17; Wal13b], and Haydys and the author

[HW15] for some recent progress. What is clear, nonetheless, is that irreducible unobstructed

G2–instantons should contribute with ±1 (depending on orientations).

De�nition 1.3. A G2–instanton A ∈ A(E) is called irreducible (unobstructed) if the elliptic

complex

Ω0(Y , gE )
dA
−−→ Ω1(Y , gE )

ψ∧dA
−−−−→ Ω6(Y , gE )

dA
−−→ Ω7(Y , gE )

has vanishing cohomology in degree zero (one).
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In [SW15] Sá Earp and the author developed a method for constructing irreducible unobstructed

G2–instantons over twisted connected sums. So far, however, we were unable to �nd a single

instance of the input required for this construction. This brief note is meant to ameliorate this

disgraceful situation by showing that our method can be used to produce at least one example.

Let us brie�y recall the twisted connected sum construction, a rich source of G2–manifolds,

which was suggested by Donaldson, pioneered by Kovalev [Kov03] and later extended and im-

proved by Kovalev and Lee [KL11], and Corti, Haskins, Nordström and Pacini [CHNP15].

De�nition 1.4. A building block is a non-singular algebraic 3–fold Z together with a projective

morphism f : Z → P1
such that:

• the anticanonical class −KZ ∈ H
2(Z ) is primitive,

• Σ B f −1(∞) is a smooth K3 surface and Σ ∼ −KZ .

A framing of a building block (Z , Σ) consists of a hyperkähler structure ω = (ωI ,ω J ,ωK ) on Σ
such that ω J + iωK is of type (2, 0) as well as a Kähler class on Z whose restriction to Σ is [ωI ].1

For the purpose of this article we are mostly interested in the following class of building blocks

introduced by Kovalev [Kov03].

De�nition 1.5. A building block is said to be of Fano type if it is obtained by blowing-up a Fano

3–fold W along the base locus of general pencil |Σ0, Σ∞ | ⊂ | − KW |. (See Section 2.1 for more

details on this construction.)

Given a framed building block (Z , Σ,ω), using the work of Haskins, Hein and Nordström

[HHN15], we can make V B Z\Σ into an asymptotically cylindrical (ACyl) Calabi–Yau 3–fold

with asymptotic cross-section S1 × Σ; hence, Y B S1 ×V is an ACyl G2–manifold with asymptotic

cross-section T 2 × Σ.

De�nition 1.6. A matching of pair of framed building blocks (Z±, Σ±,ω±) is a hyperkähler rotation

r : Σ+ → Σ−, i.e., a di�eomorphism such that

r
∗ωI,− = ω J ,+, r

∗ω J ,− = ωI,+ and r
∗ωK,− = −ωK,+.

Given a matched pair of framed building blocks (Z±, Σ±,ω±; r), the twisted connected sum

construction produces a simply-connected compact 7–manifold Y together with a family of

torsion-free G2–structures {ϕT : T � 1} by gluing truncations of Y± along their boundaries via

interchanging the circle factors and r.

Sá Earp [Sá 15] proved that given a holomorphic vector bundle E on a building block with

E |Σ µ–stable,2 the smooth vector bundle underlying E |V can be equipped with a Hermitian Yang–

Mills connection which is asymptotic at in�nity to the anti-self-dual connection A∞ inducing the

1The existence of such a class is not guaranteed a priori.

2Recall that a holomorphic bundle E on a compact Kähler n–fold (X ,ω) is µ–(semi)stable if for each torsion-

free coherent subsheaf F ⊂ E with 0 < rkF < rkE we have (µ(F) 6 µ(E)) µ(F) < µ(E). Here µ(E) B〈
c1(E) ∪ [ω]

n−1, [X ]
〉
/rkE is the slope of E (and similarly for F).
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holomorphic structure onE |Σ [Don85]. Building on this, Sá Earp and the author [SW15] developed

a method for constructing G2–instantons over twisted connected sums provided a pair E± of such

bundles and a lift r̄ : E+ |Σ+ →E− |Σ− of the hyperkähler rotation r, which pulls back A∞,− to A∞,+
(and assuming certain transversality conditions). The following is a very special case of the main

result of [SW15].

Theorem 1.7. Let (Z±, Σ±,ω±; r) be a matched pair of framed building blocks. Denote by Y the
compact 7–manifold and by {ϕT : T � 1} the family of torsion-free G2–structures obtained from the
twisted connected sum construction. LetE± → Z± be a pair of rank r holomorphic vector bundles
such that the following hold:

• c1(E+ |Σ+) = r
∗c1(E− |Σ−) and c2(E+ |Σ+) = r

∗c2(E− |Σ−).

• E± |Σ± is µ–stable with respect to ωI,± and spherical, i.e.,

H ∗(Σ±,End0(E± |Σ±)) = 0.

• E± is in�nitesimally rigid:

(1.8) H 1(Z±,End0(E±)) = 0.

Then there exists a U(r )–bundle E over Y with

(1.9) c1(E) = ϒ(c1(E+), c1(E−)) and c2(E) = ϒ(c2(E+), c2(E−))

and a family of connections {AT : T � 1} on the associated PU(r )–bundle with AT being an
irreducible unobstructed G2–instanton over (Y ,ϕT ).

Remark 1.10. The map

ϒ : {([α+], [α−]) ∈ H
ev(Z+) × H

ev(Z−) : [α+]|Σ+ = r
∗([α−]|Σ−)} → H ev(Y )

is the natural patching map denoted by Y in [CHNP15, De�nition 4.15].

Let res± : H 2(Z±) → H 2(Σ±) denote the restriction maps associated with the inclusions Σ± ⊂
Z± and set

N± B im res± .

If E± |Σ± is spherical, then c1(E± |Σ±) must be non-zero; hence, Theorem 1.7 cannot be applied in

situations where N+ ∩ r
∗N− = 0. In particular, this rules out all the examples in [Kov03; KL11] as

well as the mass-produced examples in [CHNP15]. This means that the list of currently known

G2–manifolds to which Theorem 1.7 could potentially be applied is relatively short. Moreover, it

has proved rather di�cult to �nd suitable E±.

Crowley and Nordström [CN14] systematically studied twisted connected sums of building

blocks arising from Fano 3–folds with Picard number two; in particular, those that arise from

matchings with N+ ∩ r
∗N− , 0. This note shows that for one such twisted connected sum the

hypotheses of Theorem 1.7 can be satis�ed.
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Theorem 1.11. There exists a twisted connected sum Y of a pair of Fano type building blocks (Z±, Σ±),
arising from #13 and #14 in Mori and Mukai’s classi�cation of Fano 3–folds with Picard number two
[MM81, Table 2], admitting a pair of rank 2 holomorphic vector bundlesE± as required by Theorem 1.7.
In particular, each of the resulting twisted connected sums (Y ,ϕT ) with T � 1 carries an irreducible
unobstructed G2–instanton on an SO(3)–bundle.

Remark 1.12. In earlier work [Wal13a] the author constructed examples of irreducible unobstructed

G2–instantons over G2–manifolds arising from Joyce’s generalised Kummer construction [Joy96a;

Joy96b]. To the author’s best knowledge, Theorem 1.11 provides the �rst example of an irreducible

unobstructed G2–instanton over a twisted connected sum.

The method of proof relies mostly on certain arithmetic properties enjoyed by the twisted

connected sum listed as [CN14, Table 4, Line 16] by Crowley and Nordström. A more abstract

existence theorem is stated as Theorem 3.14. It is an interesting question to ask whether there are

any further twisted connected sums to which this result can be applied.

Finally, it should be pointed out that there is a very recent preprint by Menet, Nordström

and Sá Earp [MNS17] in which they use the more general main result of [SW15] to construct one

G2–instanton.

Acknowledgements The author is grateful to Johannes Nordström for pointing out the G2–

manifold constructed in [CN14] on which the above example lives; moreover, he thanks the

anonymous referees for thoughtful comments and suggestions. The author gratefully acknowledges

support from the Simons Center for Geometry and Physics, Stony Brook University at which part

of the research for this paper was carried out.

2 The twisted connected sum

In this section we provide further details on Fano type building blocks, explain how to construct

matching pairs of framed building blocks and describe the twisted connected sum mentioned in

Theorem 1.11.

2.1 Building blocks of Fano type

If W is a Fano 3–fold, then according to Shokurov [Šok79] a general divisor Σ ∈ | − KW | is a

smooth K3 surface. Given a general pencil |Σ0, Σ∞ | ⊂ | − KW |, blowing-up its base locus yields

a smooth 3–fold Z together with a base-point free anti-canonical pencil spanned by the proper

transforms of Σ0 and Σ∞. The resulting projective morphism f : Z → P1
makes (Z , Σ∞) into a

building block with

(2.1) N B im

(
res : H 2(Z ) → H 2(Σ)

)
� Pic(W ),

see [Kov03, Proposition 6.42] and [CHNP15, Proposition 3.15].
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Moı̆šezon [Moı̆67, Theorem 7.5] showed that if −KW is very ample for a very general3 Σ ∈
| − KW | we have Pic(Σ) = Pic(W ). Moreover, according to Kovalev [Kov09, Proposition 2.14] (see

also, Voisin [Voi07, Corollary 2.10]) we can assume that f : Z → P1
is a rational double point

(RDP) K3 �bration, by which we mean that it has at only �nitely many singular �bres and the

singular �bres have only RDP singularities. (In fact, Kovalev asserts that generically the singular

�bres have only ordinary double points.)

2.2 Matching building blocks

Fix a lattice L which is isomorphic to (H 2(Σ),∪) for Σ a K3 surface. Using the Torelli theorem and

Yau’s solution to the Calabi conjecture, Corti, Haskins, Nordström, and Pacini [CHNP15, section 6]

showed that a set of framings of a pair of building blocks Z± together with a matching is equivalent

(up to the action of O(L)) to lattice isomorphisms h± : L → H 2(Σ±) and an orthonormal triple

(k+,k−,k0) of positive classes in LR B L ⊗Z R with h±(k±) the restriction of a Kähler class on Z±
and 〈k∓,±k0〉 the period point of (Σ±,h±). (The corresponding framings have [ωI,±] = h±(k±) and

the matching is such that r∗ = h+ ◦ h
−1

− .) The following de�nition is useful to further simplify the

matching problem.

De�nition 2.2. Let Z be a family of building blocks with constant N and a �xed primitive isometric

embedding N ⊂ L. Let Amp be an open subcone of the positive cone in NR. Z is called (N ,Amp)–
generic if there exists a subset UZ ⊂ DN B {Π ∈ P(N⊥C ) : Π Π̄ > 0} with complement a countable

union of complex analytic submanifolds of positive codimension and with the property that for

any Π ∈ UZ and k ∈ Amp there exists a (Z , Σ) ∈ Z and a marking h : L → H 2(Σ) such that Π is

the period point of (Σ,h) and h(k) is the restriction to Σ of a Kähler class on Z .

This de�nition slightly deviates from [CHNP15, De�nition 6.17]. There it is required that the

complement ofUZ is a locally �nite union of complex analytic submanifolds of positive codimension.

The above slightly weaker condition still su�ces for the proof of the next proposition to carry

over verbatim.

Proposition 2.3 ([CHNP15, Proposition 6.18]). Let N± ⊂ L be a pair of primitive sublattices of
signature (1, r± − 1) and let Z± be a pair of (N±,Amp±)–generic families of building blocks. Suppose
thatW B N+ + N− is an orthogonal pushout.4 Set T± B N⊥± andW± B N± ∩T∓. If

Amp± ∩W± , �,

then there exist (Z±, Σ±) ∈ Z±, markings h± : L→ H 2(Σ±) compatible with the given embeddings
N± ⊂ L and an orthonormal triple (k+,k−,k0) of positive classes in LR with:

• k± ∈ Amp± ∩W±,R and k0 ∈W
⊥,

3Here very general means that the set of Σ ∈ | − KW | not satisfying the asserted condition is a countable union of

complex analytic submanifolds of positive codimension in PH0(−KW ).

4This means thatWR =W+,R ⊕W−,R ⊕ (N+,R ∩ N−,R).

5



• h±(k±) the restriction of a Kähler class on Z±, and

• 〈k∓,±k0〉 the period point of (Σ±,h±).

If Z is a family of building blocks arising from a full deformation type of Fano 3–folds, then

we can always �nd an open subcone Amp of the positive cone such that Z is (N ,Amp)–generic

[CHNP13, Proposition 6.9]. (Also De�nition 2.2 allows to slightly shrink Z from a full deformation

type by imposing very general conditions in the sense of Footnote 3.) This reduces �nding a

matching of a pair such families of building blocks to the arithmetic problem of embedding N±
into L compatible with Proposition 2.3.

2.3 An example due to Crowley and Nordström

We will now describe the twisted connected sum found by Crowley and Nordström [CN14, Table

4, Line 16] which we referred to in Theorem 1.11.

Consider the following pair of Fano 3–folds:

• Denote by Q ⊂ P4
a smooth quadric. LetW+ → Q denote the blow-up of Q in a degree 6

genus 2 curve [MM81, Table 2, #13].

• Denote by V5 a section of the Plücker-embedded Grassmannian Gr(2, 5) ⊂ P9
by a subspace

of codimension 3. Let W− → V5 denote the blow-up of V5 in a elliptic curve that is the

intersection of two hyperplane sections [MM81, Table 2, #14].

The anticanonical divisors −KW± both are very ample. To see this note that by according to [Isk78,

Section 1] ifW is an index r Fano 3–fold and −KW is not very ample, then either |− 1

rKW | has a

base point orW is hyperelliptic. According to [IP99, Remarks preceding Table 12.3] neither is the

case for the Fano 3–folds under consideration; see also [IP99, Theorem 2.1.16 and Theorem 2.4.5].

W± both have Picard number 2 with Pic(W±) generated by H±, the pullback of a generator of

Pic(Q) and Pic(V5) respectively, and the exceptional divisor E±. With respect to the bases (H±,E±)
the intersection forms on N± = Pic(W±), see (2.1), can be written as(

6 6

6 2

)
and

(
10 5

5 0

)
respectively.

N± can be thought of as the overlattices Z2 + 1

5
(3,−1)Z and Z2 + 1

6
(1, 1)Z of Z2

, generated by

A+ = 3H+ − E+ and B+ = 4H+ − 3E+,

and A− = 3H− − 2E− and B− = 3H− − 4E−,
(2.4)

with intersection forms (
20 0

0 −30

)
and

(
30 0

0 −30

)
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respectively. The overlatticeW B Z3 + 1

5
(3, 0,−1)Z + 1

6
(0, 1, 1)Z of Z3

with intersection form

©«
20 0 0

0 30 0

0 0 −30

ª®¬
is an orthogonal pushout of N± along R = N+ ∩ N− = (−30).

By Nikulin [Nik79, Theorem 1.12.4 and Corollary 1.12.3] the latticeW (and thus also N±) can

be embedded primitively into L. Since we can choose Amp± such that Amp± ∩W± is spanned by

A±, Proposition 2.3 yields matching data with k± a multiple of A± for a pair of building blocks

(Z±, Σ±) of Fano type arising fromW±. Moreover, the resulting matching r is such that B+ = r
∗B−

(which generates N+ ∩ r
∗N−). By the discussion at the end of Section 2.1 we may assume that for

all but countably many b ∈ P1
the �bre Σ±,b B f −1

± (b) satis�es Pic(Σ±,b ) = N±; in particular, we

may assume that this holds for Σ± = Σ±,∞. Moreover, we may assume that f± : Z± → P1
is an

RDP K3 �bration.

3 Bundles on the building blocks

We will now construct holomorphic vector bundles E± over the building blocks Z± such that the

hypotheses of Theorem 1.7 are satis�ed.

The following theorem provides a spherical µ–semistable vector bundle E±,b with

(3.1) rkE±,b = 2, c1(E±,b ) = B± and c2(E±,b ) = −6

with B± as in (2.4) on each non-singular �bre Σ±,b B f −1

± (b).

Theorem 3.2 (Kuleshov [Kul90, Theorem 2.1]). Let (Σ,A) be a polarised smooth K3 surface. If
(r , c1, c2) ∈ N × H 1,1(Σ,Z) × Z are such that

(3.3) 2rc2 − (r − 1)c2

1
− 2(r 2 − 1) = 0, 5

then there exists a spherical µ–semistable vector bundleE on Σ with

rkE = r , c1(E) = c1 and c2(E) = c2.

Remark 3.4. By Hirzebruch–Riemann–Roch, (3.3) is equivalent to χ (End0(E)) = 0, a necessary

condition for E to be spherical.

Set

U± B {b ∈ P1
: Σ±,b is non-singular and Pic(Σ±,b ) � N±}.

5Here and in the following, for x ∈ H2(Σ), we write x2 ∈ Z to denote x ∪ x ∈ H4(Σ) � Z.
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Since A⊥± ⊂ N± is generated by B± and B2

± = −30 < −6, for b ∈ U± the following guarantees that

E±,b is indeed µ–stable (and thus stable6).

Proposition 3.5. In the situation of Theorem 3.2, if the divisibilities of r and c1 are coprime and for
all non-zero x ∈ H 1,1(Σ,Z) perpendicular to c1(A) we have

(3.6) x2 < −
r 2(r 2 − 1)

2

,

thenE is µ–stable.

Proof. Suppose F were a destabilising sheaf, i.e., a torsion-free subsheaf F ⊂ E with 0 <

rkF < rkE and µ(F) = µ(E). Since c1(E)c1(A) = rkE · µ(E) (and similarly for F), x B

rkE · c1(F) − rkF · c1(E) ∈ c1(A)
⊥

. The discriminant of E is

∆(E) B 2 rkE · c2(E) − (rkE − 1)c1(E)
2 = 2(r 2 − 1)

by (3.3). According to [HL10, Theorem 4.C.3] we must have either

−
(rkE)2

4

∆(E) 6 x2,

which violates (3.6), or x = 0.

The latter, however, implies

rkE · c1(F) = rkF · c1(E),

which is impossible because the divisibilities of rkE and c1(E) are coprime. �

As a consequence of this and the following, for b ∈ U± the moduli space of semistable bundles

on Σ±,b satisfying (3.1) is a reduced point.

Theorem 3.7 (Mukai [HL10, Theorem 6.1.6]). Let (Σ,A) be a polarised smooth K3 surface. Suppose
thatE is a stable sheaf satisfying (3.3) with r = rkE, c1 = c1(E) and c2 = c2(E). ThenE is locally
free and any other semistable sheaf satisfying the same condition must be isomorphic toE.

If we were able construct holomorphic vector bundlesE± on Z± whose restrictions to the �bres

Σ±,b with b ∈ U± agree with E±,b and which satisfy (1.8), then we could apply Theorem 1.7 and

the proof of Theorem 1.11 would be complete. To see this, note that∞ ∈ U± and thus E± |Σ±,∞ have

the same rank, their characteristic classes are identi�ed by r∗ (since r∗B− = B+ by construction)

and both are µ–stable. The construction of E± is achieved using the following tool. (Note that

1

2
B2

± + 6 = −9; hence, (3.9) holds in our situation in view of (3.1).)

6Recall that a torsion-free coherent sheaf E on a projective variety (X ,O(1)) is called (semi)stable if for each

torsion-free coherent subsheaf F ⊂ E with 0 < rkF < rkE we have (pF 6 pE) pF < pE . Here pE denotes the

reduced Hilbert polynomial of E, the unique polynomial satisfying pE(m) = χ (E ⊗ O(m))/rkE for all m ∈ Z, and we

compare polynomials using the lexicographical order of their coe�cients.

The notions of µ–stability and stability are closely related in case (X ,O(1)) is smooth (and thus Kähler): because

pE(m) = degO(1)/n! ·mn + (µ(E) + 1

2
deg(KX ))/(n − 1)! ·mn−1 + · · · , µ–stable implies stable (and semistable implies

µ–semistable).
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Proposition 3.8. Let f : Z → B be RDP K3 �bration from a projective 3–fold Z to a smooth curve B
and set S B {b ∈ B : Σb B f −1(b) is singular}. Let (r , c1, c2) ∈ N × im(res : H 2(Z ) → H 2(Σb )) × Z
for some b < S be such that (3.3) holds and

(3.9) gcd

(
r ,

1

2

c2

1
− c2

)
= 1.

Suppose that there is a set U ⊂ B\S whose complement is countable and for each b ∈ U the moduli
spaceMb of semistable bundlesEb on Σb with

(3.10) rkEb = r , c1(Eb ) = c1 and c2(Eb ) = c2

consists of a single reduced point: Mb = {[Eb ]}. Then there exists a holomorphic vector bundleE
over Z such that, for all b ∈ U ,E |Σb � Eb . E is spherical, i.e., H ∗(End0(E)) = 0 and unique up to
twisting by a line bundle pulled-back from B.

Remark 3.11. Note that by Hirzebruch–Riemann–Roch χ (Eb ) =
1

2
c2

1
− c2 + 2 rkEb , so (3.9) is asking

that rkEb and χ (Eb ) be coprime.

This result is essentially contained in Thomas’ work on sheaves on K3 �brations [Tho00,

Theorem 4.5]. Its proof heavily relies on the following generalisation of Theorem 3.7.

Theorem 3.12 (Thomas [Tho00, Proof of Theorem 4.5]). Let (Σ,A) be a polarised K3 surface with at
worst RDP singularities. IfE is a stable coherent sheaf on Σ with χ (End0(E)) = 0, thenE is locally
free.

We also use the following simple observation.

Proposition 3.13. IfE is a semistable sheaf with rkE and χ (E) coprime, thenE is stable.

Proof. IfE is destabilised by F ⊂ E with 0 < rkF < rkE, then pF = pE . In particular, evaluating

atm = 0 we have

rkE · χ (F) = rkF · χ (E).

This contradicts rkE and χ (E) being coprime. �

Proof of Proposition 3.8. Consider the moduli functor M : Schop

B → Set which assigns to a B–

scheme U the set

M(U ) B {E a coherent sheaf over Z ×B U satisfying (♣)}/∼ .

Here (♣) means that E is �at over U , for each b ∈ U , E ⊗OU k(b) is semistable and its Hilbert

polynomial P agrees with that of a sheaf on a smooth �bre with characteristic classes given by

(3.10). We write E ∼ F if and only if there exists a line bundle L over U such that E and F ⊗L

are S–equivalent; cf. Maruyama [Mar78, p. 561] and Huybrechts and Lehn [HL10, Section 4.1].
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M is universally corepresented by a proper and separated B–scheme M, i.e., the moduli problem

has a proper and separated coarse moduli space, see Simpson [Sim94, Section 1]. The �bre of M
over b ∈ B is the coarse moduli space of semistable sheaves on Σb with Hilbert polynomial P .

Denote by M the component of M whose �bres over B\S are the coarse moduli space Mb of

semistable sheaves E on Σb satisfying (3.10). By assumption, for each b ∈ U , Mb consists of a

single reduced point [Eb ]. By (3.9) and Proposition 3.13, Eb is stable and, hence, spherical because

χ (End0(Eb )) = 0. By Theorem 3.7 it is locally free. Using deformation theory, see, e.g., Hartshorne

[Har10, Section 7], one can show that M → B is surjective onto a open neighbourhood of each

b ∈ U and thus to all of B, since it is proper. Using (3.9) and Proposition 3.13 as well as Theorem 3.7

again we see that for each b < S the �bre Mb is a reduced point. Since M is separated, it follows

that M = B.

By [HL10, Corollary 4.6.7], (3.9) guarantees the existence a universal sheaf E on Z ×B M =
Z .7 By �atness, for each b ∈ B, χ (E |Σb ) =

1

2
c2

1
− c2 + 2r and χ (End0(E |Σb )) = 0. From (3.9),

Proposition 3.13 and Theorem 3.12 (resp. Theorem 3.7) it follows that E |Σb is locally free and

spherical for arbitrary b ∈ B. Therefore,E is also locally free by [Sim94, Lemma 1.27] and spherical

by Grothendieck’s spectral sequence.

The asserted uniqueness property follows from the fact that E is a universal sheaf and the

de�nition of the moduli functor. �

This completes the construction of the bundles E± and thus the proof of Theorem 1.11. Clearly,

the above argument also proves the following more abstract result.

Theorem 3.14. Let (Z±, Σ±,ω±; r) be a matched pair of framed building blocks. Suppose that
f± : Z± → P1 are RDP K3 �brations and that for all but countably many b ∈ P1 we have

Pic(f −1

± (b)) � N± B im

(
res± : H 2(Z±) → H 2(Σ±)

)
.

Suppose there exists a (r , c1, c2) ∈ N × (N+ ∩ r∗N−) × Z such that

2rc2 − (r − 1)c2

1
− 2(r 2 − 1) = 0

and

gcd

(
r ,

1

2

c2

1
− c2

)
= 1.

If [ωI,±] ∈ H
2(Σ±,Q) and for all non-zero x ∈ [ωI,±]

⊥ ⊂ N± we have

x2 < −
r 2(r 2 − 1)

2

,

then there exists rank r holomorphic vector bundlesE± on Z± with

c1(E+ |Σ+) = r
∗c1(E− |Σ−) = c1 and c2(E+ |Σ+) = r

∗c2(E− |Σ−) = c2

satisfying the hypotheses of Theorem 1.7.

7Strictly speaking, the quoted result only provides the universal sheaf over f −1(B\S); however, the argument of

[Tho00, second paragraph in the proof of Theorem 4.5] shows why the argument works uniformly on B. Alternatively,

the existence of the universal sheaf can be deduced from [Sim94, Theorem 1.21] and Tsen’s theorem H2

et
(B,O∗) = 0.
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