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Abstract

We give sufficient conditions for a family of 𝐺2–instantons to be “spontaneously” be born

out of a Fueter section of a bundle of moduli space of ASD instantons over an associative

submanifold. This phenomenon is one of the key difficulties in defining the conjectural 𝐺2

Casson invariant proposed by Donaldson–Thomas in [DT98].

1 Introduction

Fix a compact 7–manifold 𝑌 together with a positive 3–form 𝜙 satisfying a certain non-linear

partial differential equation; see (2.6) and the discussion preceding it. The 3–form 𝜙 canonically

equips 𝑌 with a metric (and orientation) such that the holonomy group Hol(𝑔) is contained in

the exceptional Lie group 𝐺2; hence, (𝑌, 𝜙) is commonly called a 𝐺2–manifold and 𝜙 is called a

torsion-free 𝐺2–structure.

Given a𝐺–bundle 𝐸 over𝑌 , Donaldson and Thomas [DT98] noted that there is a Chern–Simons

type functional onB(𝐸), the space of gauge equivalence classes of connections, whose critical
points [𝐴] satisfy

(1.1) ∗(𝐹𝐴 ∧ 𝜙) = −𝐹𝐴 .

Solutions of (1.1) are called 𝐺2–instantons. These are the central objects in gauge theory on

𝐺2–manifolds. The moduli space of 𝐺2–instantons

M(𝐸, 𝜙) := {[𝐴] ∈ B(𝐸) : ∗(𝐹𝐴 ∧ 𝜙) = −𝐹𝐴}

can, in general, be a very complicated space. However, after gauge fixing, (1.1) has an elliptic

deformation theory of index zero, i.e.,M(𝐸, 𝜙) has virtual dimension zero. Thus one can try to

“count” M(𝐸, 𝜙), say, by a suitable perturbation scheme or via virtual cycle techniques and arrive

at a number

𝑛(𝐸, 𝜙) := #M(𝐸, 𝜙) .

How does 𝑛(𝐸, 𝜙) depend on 𝜙? Since the deformation theory of𝐺2–instantons is very well-

behaved, the key question one needs to understand is: how can 𝐺2–instantons degenerate as 𝜙
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varies? Consider a family of𝐺2–instantons (𝐴𝑡 )𝑡 ∈ (0,𝑇 ] over a family of𝐺2–manifolds (𝑌, 𝜙𝑡 )𝑡 ∈ (0,𝑇 ]
and assume that 𝜙𝑡 converges to a torsion-free 𝐺2–structure 𝜙0 as 𝑡 → 0. From classical results

due to Uhlenbeck [Uhl82a], Price [Pri83] and Nakajima [Nak88] and more recent progress by Tian

[Tia00] and Tao and Tian [TT04] one can conclude the following:

• There is a closed subset 𝑃 of𝑌 of finite 3–dimensional Hausdorff measure and a𝐺2–instanton

𝐵 over (𝑌\𝑃, 𝜙0) such that up to gauge transformations a subsequence of (𝐴𝑡 ) converges to
𝐵 in 𝐶∞

loc
on 𝑌\𝑃 as 𝑡 → 0.

• 𝐵 can be extended to the complement of a closed set sing(𝐵) of vanishing 3–dimensional

Hausdorff measure. However, sing(𝐵) might very well be non-empty, that is: one might

encounter non-removable singularities.

• 𝑃 supports an integral current calibrated by 𝜙0, or more informally: 𝑃 is a, possibly wildly

singular, associative submanifold in (𝑌, 𝜙0). At almost every point 𝑥 ∈ 𝑃 , the degeneration
of (𝐴𝑡 ) is modelled on (a bubbling tree of) ASD instantons bubbling off in the direction

transverse to 𝑃 .

This, of course, represents the worse case scenario. One would expect that a generic defor-

mation is less wild. In this article we only consider the case when 𝐵 extends to all of 𝑌 and 𝑃 is

smooth. Moreover, we form a bundle 𝔐 over 𝑃 whose fibres are moduli spaces of ASD instantons,

as explained in Section 4, and assume that the ASD instantons bubbling off transverse to 𝑃 give

rise to a section ℑ ∈ Γ(𝔐). Since the ASD instantons bubbling off do not have a canonical scale, ℑ

is unique only up to the action of 𝐶∞(𝑃,R>0). Donaldson and Segal [DS11] noticed that ℑ cannot

be arbitrary but should satisfy a non-linear p.d.e. called the Fueter equation, provided scalings

are chosen appropriately; see Section 4 for more details. This equation is elliptic of index zero;

however, since𝔐 is a bundle of cones, one only expects solutions to appear only at isolated values

in 1–parameter families. In particular, for a generic torsion-free 𝐺2–structure 𝜙 , no Fueter section

ℑ ∈ Γ(𝔐) ought to exists. Hence, the bubbling phenomenon for 𝐺2–instantons should only occur

in codimension one.

The main result of this article is to prove that given the data (𝐵, 𝑃,ℑ) and assuming certain

“acyclicity/unobstructedness conditions” (which are expounded in Definition 2.14, Definition 2.24

and Definition 4.13), we can produce a family of 𝐺2–instantons yielding (𝐵, 𝑃,ℑ) in the limit.

Theorem 1.2. Let 𝑌 be a compact 7–manifold equipped with a family of torsion-free 𝐺2–structures
(𝜙𝑡 )𝑡 ∈ (−𝑇,𝑇 ) . Suppose we are given:

• an acyclic 𝐺2–instanton 𝐵 on a 𝐺–bundle 𝐸0 over (𝑌, 𝜙𝑡 ),

• an unobstructed associative submanifold 𝑃 in (𝑌, 𝜙0) and

• a Fueter sectionℑ of an instanton moduli bundle𝔐 over 𝑃 associated 𝐸0 |𝑃 which is unobstructed
with respect to (𝜙𝑡 ).
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Then there is a constant Λ > 0, a𝐺–bundle 𝐸 together with a family of connections (𝐴𝜆)𝜆∈ (0,Λ] and
a continuous function 𝑡 : [0,Λ] → (−𝑇,𝑇 ) with 𝑡 (0) = 0 such that:

• 𝐴𝜆 is a 𝐺2–instanton on 𝐸 over (𝑌, 𝜙𝑡 (𝜆) ) for all 𝜆 ∈ (0,Λ].

• 𝐴𝜆 converges to 𝐵 on the complement of 𝑃 and at each point 𝑥 ∈ 𝑃 an ASD instanton in the
equivalence class given by ℑ(𝑥) bubbles off transversely as 𝜆 → 0.

As was already pointed out by Donaldson and Segal [DS11], an immediate consequence is that

𝑛(𝐸, 𝜙) has no reason to be invariant under (large) deformations of 𝜙 . They suggest that one should

try to construct a counter term, say𝑚(𝐸, 𝜙), as a weighted count of associative submanifolds and

𝐺2–instantons on bundles of “smaller” topological type than 𝐸, so that the sum 𝑛(𝐸, 𝜙) +𝑚(𝐸, 𝜙)
is invariant under deformations. The crucial point is to find out what these weights should be. A

candidate for the definition of these weights in the “low energy” SU(2)–theory, which was hinted

at by Donaldson–Segal [DS11], is explained in more detail in the author’s PhD thesis [Wal13b,

Chapter 6]. A more systematic approach, based on generalised Seiberg–Witten equations and the

ADHM construction, is currently being developed by Haydys and the author; see [HW15] for a

first step.

Remark 1.3. It would be interesting to see a concrete example of the input required by Theorem 1.2.

Unfortunately, no such example is known currently. The main difficulty with constructing such

examples is to ensure that ℑ is unobstructed with respect to (𝜙𝑡 ). It should be pointed out, however,
that a construction closely related to Theorem 1.2 has been used by the author to construct Spin(7)–
instantons from a Fueter section of a bundle of moduli space of ASD instantons over a Cayley

submanifold [Wal16].

Remark 1.4. The proof of Theorem 1.2 is based on a gluing construction and the analysis involved

is an extension of that required for the construction of 𝐺2–instantons on generalised Kummer

constructions in [Wal13a]. As such there are some similarities with Lewis’ construction of Spin(7)–
instantons [Lew98], unpublished work by Brendle on Spin(7)–instantons [Bre03] and Pacard–

Ritoré’s work on the Allen–Cahn equation [PR03].

Acknowledgements. This article is the outcome of work undertaken by the author for his PhD

thesis at Imperial College London, supported by European Research Council Grant 247331. I am

grateful to my supervisor Simon Donaldson for his encouragement and for sharing some of his

ideas with me.

2 Review of geometry on 𝐺2–manifolds

We begin with a terse review of the basic notions of 𝐺2–geometry. This is mainly to fix notation

and conventions, and also recall a few results which we will make use of later. The reader who is

interested in a more detailed exposition is referred to Joyce’s book [Joy00], which is the standard

reference for most of the material in this section.
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Definition 2.1. A 3–form 𝜙 on a 7–dimensional vector space is called positive if for each non-zero

vector 𝑣 ∈ 𝑉 the 2–form 𝑖 (𝑣)𝜙 on 𝑉 /⟨𝑣⟩ is symplectic.

Example 2.2. The 3–form 𝜙0 ∈ Ω3(R7) defined by

(2.3) 𝜙0 := d𝑥123 − d𝑥145 − d𝑥167 − d𝑥246 + d𝑥257 − d𝑥347 − d𝑥356

is positive.

This example is representative in the sense that for any positive 3–form 𝜙 on 𝑉 there exists a

basis of 𝑉 with respect to which 𝜙 is given by 𝜙0; see, e.g., [SW17, Theorem 3.2]. Hence, the space

of positive 3–forms on 𝑉 is a GL(𝑉 )–orbit. The stabiliser of a fixed positive 3–form is isomorphic

to the exceptional Lie group 𝐺2. The choice of a positive 3–form 𝜙 equips 𝑉 with a canonical

metric 𝑔 and orientation on 𝑉 such that

(2.4) 𝑖 (𝑣1)𝜙 ∧ 𝑖 (𝑣2)𝜙 ∧ 𝜙 = 6𝑔(𝑣1, 𝑣2)vol.

In particular, ifP(𝑉 ) denotes the space of positive 3–forms on 𝑉 , then there is a non-linear map

Θ : P(𝑉 ) → Λ4𝑉 ∗
defined by

Θ(𝜙) := ∗𝜙𝜙.

Definition 2.5. A𝐺2–structure on a 7–manifold 𝑌 is a positive 3–form 𝜙 ∈ Γ(P(𝑇𝑌 )) ⊂ Ω3(𝑌 ). It
is called torsion-free if

(2.6) d𝜙 = 0 and dΘ(𝜙) = 0.

A 7–manifold 𝑌 equipped with a torsion-free 𝐺2–structure 𝜙 is called a 𝐺2–manifold.

Remark 2.7. From the above discussion is clear that a 𝐺2–structure is equivalent to a reduction

of the structure group of the tangent bundle from GL(7) to 𝐺2. A theorem of Fernández and

Gray [FG82, Theorem 5.2] asserts that (2.6) is equivalent to ∇𝑔𝜙 = 0; hence, for a torsion-free

𝐺2–structure, the holonomy group Hol(𝑔) is contained in 𝐺2.

Examples of 𝐺2–manifold with Hol(𝑔) strictly contained in 𝐺2 are easy to come by. For our

purposes the following very trivial example will play an important rôle.

Example 2.8. Choose coordinates
(
𝑥1, 𝑥2, 𝑥3, 𝑦1, . . . , 𝑦4

)
on R7 = R3 ⊕ R4

and set

𝜔1 = d𝑦12 + d𝑦34, 𝜔2 = d𝑦13 − d𝑦24
and 𝜔3 = d𝑦14 + d𝑦23.

Then

𝜙 = d𝑥123 − d𝑥1 ∧ 𝜔1 − d𝑥2 ∧ 𝜔2 − d𝑥3 ∧ 𝜔3

is a torsion-free 𝐺2–structure on R7
.

There is by now a plethora of examples of 𝐺2–manifolds due to Bryant [Bry87], Bryant and

Salamon [BS89], Joyce [Joy96], Kovalev [Kov03], Kovalev and Lee [KL11], and Corti, Haskins,

Nordström and Pacini [CHNP15]. The construction techniques (especially in the latter cases, which

yield compact examples) are quite involved and we will not go into any detail.
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2.1 Gauge theory on 𝐺2–manifolds

Let (𝑌, 𝜙) be a compact 𝐺2–manifold and let 𝐸 be a 𝐺–bundle over 𝑌 where 𝐺 is a compact Lie

group, say 𝐺 = SO(3) or 𝐺 = SU(2). Denote byA(𝐸) the space of connections on 𝐸.

Definition 2.9. A connection 𝐴 ∈ A(𝐸) on 𝐸 is called a 𝐺2–instanton on (𝑌, 𝜙) if it satisfies (1.1),
i.e.,

∗(𝐹𝐴 ∧ 𝜙) = −𝐹𝐴 .

Since 𝜙 is closed, it follows from the Bianchi identity that 𝐺2–instantons are Yang–Mills

connections. In fact, there is an energy identity which shows that 𝐺2–instantons are absolute

minima of the Yang–Mills functional.

Example 2.10. The pullback of an ASD instanton over R4
to R7 = R3 ⊕ R4

, as in Example 2.8, is a

𝐺2–instanton.

The first non-trivial examples of 𝐺2–instantons (with structure group 𝐺 = SO(3)) where
recently constructed by the author in [Wal13a]. Those live on manifolds arising from Joyce’s

generalised Kummer construction. A method to produce𝐺2–instantons on𝐺2–manifolds arising

from the twisted connected sum construction was presented by Sá Earp and the author in [SW15]

and used to produce concrete examples by the author in [Wal15].

From an analytical point of view equation (1.1) is slightly inconvenient to work with, because

its linearisation supplemented with the Coulomb gauge is not elliptic. However, we can make use

of the following result whose proof can be found, e.g., in [Wal13a, Proposition 3.7].

Proposition 2.11. Set 𝜓 := Θ(𝜙). Let 𝐴 ∈ A(𝐸) be a connection on 𝐸. Then the following are
equivalent.

1. 𝐴 is 𝐺2–instanton.

2. 𝐴 satisfies 𝐹𝐴 ∧𝜓 = 0.

3. There is a 𝜉 ∈ Ω0(𝑌, 𝔤𝐸) such that

𝐹𝐴 ∧𝜓 + ∗d𝐴𝜉 = 0.(2.12)

From Proposition 2.11 one can see that 𝐺2–instantons are in many ways similar to flat con-

nections on 3–manifolds. In particular, if 𝐴0 ∈ A(𝐸) is a 𝐺2–instanton, then there is a 𝐺2–Chern–

Simons functional

𝐶𝑆𝜓 (𝐴0 + 𝑎) :=

ˆ
𝑌

〈
𝑎 ∧ d𝐴0

𝑎 + 1

3

𝑎 ∧ [𝑎 ∧ 𝑎]
〉
∧𝜓

whose critical points are precisely the𝐺2–instantons on 𝐸. Very roughly speaking the conjectural

𝐺2 Casson invariant, suggested by Donaldson and Thomas [DT98], should be a signed count the

critical points of 𝐶𝑆𝜓 on a suitable completion of A(𝐸)/G(𝐸). HereG(𝐸) denotes the group of

gauge transformations of 𝐸.
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The infinitesimal deformation theory of 𝐺2–instantons around 𝐴 ∈ A(𝐸) is governed by the

self-dual elliptic complex

(2.13) Ω0(𝑌, 𝔤𝐸)
d𝐴−−→ Ω1(𝑌, 𝔤𝐸)

𝜓∧d𝐴−−−−→ Ω6(𝑌, 𝔤𝐸)
d𝐴−−→ Ω7(𝑌, 𝔤𝐸) .

Definition 2.14. A 𝐺2–instanton 𝐴 ∈ A(𝐸) is called irreducible, rigid or unobstructed if (2.13) has

vanishing cohomology in degree zero, one or two respectively. It is called acyclic if the cohomology

of (2.13) vanishes completely.

Remark 2.15. Since (2.13) is self-dual, rigid and unobstructed are the same thing; in particular, 𝐴 is

acyclic if and only if it is irreducible and rigid/unobstructed.

For any 𝐴 ∈ A(𝐸) we define 𝐿𝐴 = 𝐿𝐴,𝜙 : Ω0(𝑌, 𝔤𝐸) ⊕ Ω1(𝑌, 𝔤𝐸) → Ω0(𝑌, 𝔤𝐸) ⊕ Ω1(𝑌, 𝔤𝐸) by

𝐿𝐴,𝜙 :=

(
0 d

∗
𝐴

d𝐴 ∗ (𝜓 ∧ d𝐴)

)
(2.16)

where 𝜓 := Θ(𝜙). This is a self-adjoint elliptic operator. It appears as the linearisation of equa-

tion (2.12) supplemented with the Coulomb gauge and therefore controls the infinitesimal defor-

mation theory of 𝐺2–instantons. Alternatively, 𝐿𝐴 is obtained by folding the complex (2.13).

As an immediate consequence of the implicit function theorem we have the following result.

Proposition 2.17. Let 𝑌 be a compact 7–manifold and let (𝜙𝑡 )𝑡 ∈ (−𝑇,𝑇 ) be a family of torsion-free
𝐺2–structures on 𝑌 . Suppose that 𝐴 ∈ A(𝐸) is an unobstructed 𝐺2–instanton on a 𝐺–bundle 𝐸 over
(𝑌, 𝜙0). Then there is a constant 𝑇 ′ ∈ (0,𝑇 ] and a unique family of 𝐺2–instantons (𝐴𝑡 )𝑡 ∈ (−𝑇 ′,𝑇 ′ ) on
𝐸 over (𝑌, 𝜙𝑡 ) with 𝐴0 = 𝐴.

2.2 Associative submanifolds in 𝐺2–manifolds

Let (𝑌, 𝜙) be a compact𝐺2–manifold. The 3–form 𝜙 is a calibration in the sense of Harvey–Lawson

[HL82], meaning that 𝜙 is closed and that for each oriented 3–dimensional subspace 𝑃 of 𝑇𝑥𝑌 the

following inequality holds

vol𝑃 ⩽ 𝜙 |𝑃 .

Definition 2.18. An oriented submanifold 𝑃 of 𝑌 is called an associative submanifold in (𝑌, 𝜙) if it
is calibrated by 𝜙 , that is, for each 𝑥 ∈ 𝑃 we have

vol𝑇𝑥𝑃 = 𝜙 |𝑇𝑥𝑃 .

Example 2.19. R3 × {0} ⊂ R3 ⊕ R4
, as in Example 2.8, is an associative submanifold.

Associative submanifolds also arise as 3–dimensional fixed point sets of orientation reversing

involutions of 𝑌 mapping 𝜙 to −𝜙 . For concrete examples we refer the reader to Joyce [Joy96,

Part II, Section 4.2]. The recent work of Corti, Haskins, Nordström and Pacini [CHNP15] gives a

number of concrete examples of associative submanifolds in twisted connected sums.
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The importance of associative submanifolds in the study of gauge theory on 𝐺2–manifolds is

due to the following fact: Consider (R7, 𝜙0) and any orthogonal decomposition R7 = R3 ⊕ R4
. Let

𝐼 be a connection on a bundle over R4
. Then the pullback of 𝐼 to R7

is a𝐺2–instanton if and only if

there is an orientation on R3
with respect to which it is calibrated by 𝜙0 and 𝐼 is an ASD instanton

on R4
. This is the underlying reason why the bubbling locus of a sequence of 𝐺2–instantons is

associative and why the connections bubbling off transversely are ASD instantons.

In the following we will discuss some results due to McLean [McL98] concerning the deforma-

tion theory of associative submanifolds. If 𝑃 is an associative submanifold, then there is a natural

identification

(2.20) 𝑇𝑃 � Λ+𝑁 ∗𝑃 : 𝑣 ↦→ −𝑖 (𝑣)𝜙
given by (the negative of) inserting tangent vectors to 𝑃 into 𝜙 (and restricting to 𝑁𝑃 ). Thinking of

Λ+𝑁 ∗𝑃 as a sub-bundle of 𝔰𝔬(𝑁𝑃) this yields a Clifford multiplication 𝛾 : 𝑇𝑃 → End(𝑁𝑃). Denote
by

¯∇ the connection on 𝑁𝑃 induced by the Levi–Civita connection on 𝑌 .

Definition 2.21. The Fueter operator 𝐹𝑃 = 𝐹𝑃,𝜙 : Γ(𝑁𝑃) → Γ(𝑁𝑃) associated with 𝑃 is defined by

(2.22) 𝐹𝑃,𝜙 (𝑛) :=

3∑︁
𝑖=1

𝛾 (𝑒𝑖) ¯∇𝑖𝑛

with (𝑒𝑖) a local orthonormal frame on 𝑃 .

Remark 2.23. The Fueter operator 𝐹𝑃 can be identified with a twisted Dirac operator as follows.

Pick a spin structure 𝔰 on 𝑃 . Because of the identification (2.20) there is a unique SU(2)–bundle 𝔲
over 𝑃 such that 𝔰 × 𝔲 is a spin structure on 𝑁𝑃 . The bundle 𝔲 also comes with a connection, such

that the resulting connection on 𝔰 × 𝔲 is a spin connection. If /𝑆 and𝑈 denote the quaternionic line

bundles corresponding to 𝔰 and 𝔲, then /𝑆 ⊗C 𝑈 has a natural real structure and its real part can

be identified with 𝑁𝑃 . With respect to this identification 𝐹𝑃 becomes the twisted Dirac operator

/𝐷 : Γ(Re(/𝑆 ⊗C 𝑈 )) → Γ(Re(/𝑆 ⊗C 𝑈 )).
The importance of 𝐹𝑃 is that it controls the infinitesimal deformation theory of the associative

submanifold 𝑃 . In particular, the moduli space of associative submanifolds near 𝑃 is modelled on

the zero set of a smooth map from a neighbourhood of zero in the kernel of 𝐹𝑃 to its cokernel.

Definition 2.24. An associative submanifold 𝑃 is called rigid (unobstructed) if 𝐹𝑃 is injective

(surjective).

Remark 2.25. Since 𝐹𝑃 is self-adjoint, unobstructed and rigid are the same thing. So unobstructed

associative submanifolds are also rigid.

Using McLean’s setup for the deformation theory of associative submanifolds developed in

[McL98] the following is a simple consequence of the implicit function theorem.

Proposition 2.26. Let 𝑌 be a compact 7–manifold and let (𝜙𝑡 )𝑡 ∈ (−𝑇,𝑇 ) be a family of torsion-free
𝐺2–structures on 𝑌 . Suppose that 𝑃 is an unobstructed associative submanifold in (𝑌, 𝜙0). Then there
is a constant 𝑇 ′ ∈ (0,𝑇 ] and a unique family of associative submanifolds (𝑃𝑡 )𝑡 ∈ (−𝑇 ′,𝑇 ′ ) in (𝑌, 𝜙𝑡 )
with 𝑃0 = 𝑃 .
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3 Moduli spaces of ASD instantons over R4

In the next section we will explain the construction of the bundle 𝔐 of moduli spaces of ASD

instantons, the Fueter equation and provide more detail for the discussion preceding Theorem 1.2.

As a preparation we quickly recall some basic facts about moduli spaces of ASD instantons over

R4
.

Fix a 𝐺–bundle 𝐸 over 𝑆4 = R4 ∪ {∞}. Denote by𝑀 the moduli space of ASD instantons on

𝐸 framed over the point at infinity. These moduli spaces are smooth manifolds, because ASD

instantons over 𝑆4
are always unobstructed as a consequence of the Weitzenböck formula; see, e.g.,

[Tau82, Proposition 2.2]. By Uhlenbeck’s removable singularities theorem [Uhl82b, Theorem 4.1]

we can think of𝑀 as a moduli space of framed finite energy ASD instantons on R4
. In a suitable

functional analytic setup incorporating decay conditions at infinity, see, e.g., [Tau83] or [Nak90],

the infinitesimal deformation theory of a framed ASD instanton 𝐼 over R4
is governed by the linear

operator 𝛿𝐼 : Ω1(R4, 𝔤𝐸) → Ω0(R4, 𝔤𝐸) ⊕ Ω+(R4, 𝔤𝐸) defined by

(3.1) 𝛿𝐼𝑎 := (d∗𝐼𝑎, d+𝐼 𝑎).

From the work of Taubes [Tau83] it is known that 𝛿𝐼 is always surjective and that its kernel lies

in 𝐿2
. More precisely, we have the following result whose proof can be found, e.g., in [Wal13a,

Proposition 5.10].

Proposition 3.2. Let 𝐸 be a 𝐺–bundle over R4 and let 𝐼 ∈ A(𝐸) be a finite energy ASD instanton on
𝐸. Then the following holds.

1. If 𝑎 ∈ ker𝛿𝐼 decays to zero at infinity, that is to say lim𝑟→∞ sup𝜕𝐵𝑟 (0) |𝑎 | = 0, then |∇𝑘𝑎 | =
𝑂 (𝑟−3−𝑘 ) for 𝑘 ⩾ 0. Here 𝑟 : R4 → [0,∞) denotes the radius function 𝑟 (𝑥) := |𝑥 |.

2. If (𝜉, 𝜔) ∈ ker𝛿∗
𝐼
decays to zero at infinity, then (𝜉, 𝜔) = 0.

In particular, this implies (once more) that𝑀 is a smooth manifold and that it can be equipped

with an 𝐿2
metric arising from the standard metric on R4

. Clearly, Λ+
:= Λ+(R4)∗ � 𝔰𝔬(4) acts

SO(4)–equivariantly on R4
and on R ⊕ Λ+

. It is a straight-forward computation to verify that

the corresponding actions of Λ+
on Ω1(R4, 𝔤𝐸) and on Ω0(R4, 𝔤𝐸) ⊕ Ω+(R4, 𝔤𝐸) commute with 𝛿𝐼 .

Hence, we obtain an SO(4)–equivariant action of Λ+
on 𝑇𝑀 .

Remark 3.3. If we fix an identification R4 = H and correspondingly Λ+ = ImH, then the above

defines a hyperkähler structure on𝑇𝑀 . However, for our purpose it is more natural not to fix such

an identification.

𝑀 has carries an action of R4 ⋊ R+
where R4

acts by translation and R+
acts by dilation, i.e., by

pullback via 𝑠𝜆 : R4 → R4
where

𝑠𝜆 (𝑥) := 𝜆𝑥

for 𝜆 ∈ R+
. Since the centre of mass of the measure |𝐹𝐼 |2vol is equivariant with respect to the

R4
–action, we can write

𝑀 = ˚𝑀 × R4
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where
˚𝑀 is the space of instantons centred at zero. The action of Λ+

preserves this product

structure and Λ+
acts on the factor R4

in the usual way.

Example 3.4. If 𝐸 is the unique SU(2)–bundle over 𝑆4
with 𝑐2(𝐸) = 1, then 𝐸 carries a single

ASD instanton 𝐼 , commonly called “the one-instanton”, unique up to scaling, translation and

changing the framing at infinity. We can naturally write the corresponding moduli space as

𝑀 = ˚𝑀 × R4 = (/𝑆+\{0})/Z2 × R4
. Here 𝑆+ is the positive spin representation associated with R4

.

Example 3.5. In general, if 𝐸 is an SU(𝑟 )–bundle over 𝑆4
, then𝑀 can be understood rather explicitly

in terms the ADHM construction [DK90, Section 3.3].

Proposition 3.6. There exists a𝐺–bundle E over𝑀 × 𝑆4 together with a framing E|𝑀×{∞} → 𝐺 and
a tautological connection A ∈ A(E) on E such that:

• E|{ [𝐼 ] }×𝑆4 � 𝐸 and

• A restricted to {[𝐼 ]} × R4 is equivalent to [𝐼 ] viaG0(𝐸).

If we decompose the curvature of the tautological connectionA over𝑀×R4 according to the bi-grading
on Λ∗𝑇 ∗(𝑀 ×R4) induced by𝑇 (𝑀 ×R4) = 𝜋∗

1
𝑇𝑀 ⊕ 𝜋∗

2
𝑇R4, then its components satisfy the following:

• 𝐹
2,0

A = −2Δ−1

𝐼
⟨[𝑎, 𝑏]⟩.

• 𝐹
1,1

A ∈ Γ(Hom(𝜋∗
1
𝑇𝑀, 𝜋∗

2
𝑇R4 ⊗ 𝔤E)) at ( [𝐼 ], 𝑥) is the evaluation of 𝑎 ∈ 𝑇[𝐼 ]𝑀 = ker𝛿𝐼 at 𝑥 ; in

particular, it is (R ⊕ Λ+)–linear.

• 𝐹
0,2

A ∈ Γ(𝜋∗
2
Λ− (R4)∗ ⊗ 𝔤E).

Proof sketch. There is a tautological connection on the pullback of 𝐸 to A(𝐸) × 𝑆4
. It is flat in

the A(𝐸)–direction. It isG0–equivariant, but not basic; hence, induces a connection on 𝑀 × 𝑆4

after choosing a connection on A(𝐸) → A(𝐸)/G0(𝐸). We chose the connection given whose

horizontal distribution is given by the Coulomb gauge with respect to the metric on R4
; that is,

the connection with connection 1–form 𝜃 (𝑎) = Δ−1

𝐼
d
∗
𝐼
𝑎 for 𝑎 ∈ 𝑇𝐼A = Ω1(R𝑛, 𝔤𝐸). The (2, 0)–

component of the curvature of A arises from the curvature of this connection. The second two

bullets are tautological. □

4 Fueter sections of instanton moduli bundles

Let (𝑌, 𝜙) be a 𝐺2–manifold and let 𝑃 be an associative submanifold in 𝑌 . Fix a moduli space𝑀

of framed finite energy ASD instantons on R4
, as in Section 3, and let 𝐸∞ be a𝐺–bundle over 𝑃

together with a connection 𝐴∞. In the context of Theorem 1.2 we take 𝐸∞ := 𝐸0 |𝑃 and 𝐴∞ := 𝐵 |𝑃 .

Definition 4.1. The instanton moduli bundle 𝔐 over 𝑃 associated with 𝐸∞ and𝑀 is defined by

𝔐 := (Fr(𝑁𝑃) × 𝐸∞) ×SO(4)×𝐺 𝑀.

Similarly, we define
˚𝔐 with

˚𝑀 instead of𝑀 .
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Example 4.2. Let 𝑀 = (/𝑆+\{0})/Z2 × R4
be the moduli space of framed ASD instantons from

Example 3.4. If we pick 𝔰 and 𝔲 as in Remark 2.23, then

𝔐 = (𝔰 × 𝔲 × 𝐸∞) ×Spin(4)×SU(2) 𝑀 = (Re(/𝑆 ⊗ 𝐸∞)\{0})/Z2 × 𝑁𝑃.

Here we used the fact that the SO(4) action on𝑀 lifts to an action of Spin(4).

Denote by 𝑁∞𝑃 := Fr(𝑁𝑃) ×SO(4) 𝑆
4
the sphere-bundle obtained from 𝑁𝑃 by adjoining a

section at infinity.

Theorem 4.3 (Donaldson–Segal [DS11] and Haydys [Hay12]). To each section ℑ ∈ Γ(𝔐) we
can assign a 𝐺–bundle 𝐸 = 𝐸 (ℑ) over 𝑁∞𝑃 together with a connection 𝐼 = 𝐼 (ℑ) and a framing
Φ : 𝐸 |∞ → 𝐸∞ such that:

• For each 𝑥 ∈ 𝑃 the restriction of 𝐼 to 𝑁𝑥𝑃 represents ℑ(𝑥).

• The framing Φ identifies the restriction of 𝐼 to the section at infinity with 𝐴∞.

The idea of the proof in [DS11] is to use Proposition 3.6 to construct a universal bundle and

connection on𝔐 ×𝑃 𝑁∞𝑃 and to pull those back via ℑ.

The actions of R+
on R4

and 𝑀 lift to fibre-wise actions on 𝑁𝑃 and 𝔐. The construction in

Theorem 4.3 is equivariant with respect to this action. In particular, 𝐼 (𝑠∗
𝜆
ℑ) = 𝑠∗

𝜆
𝐼 (ℑ). It will be

convenient to use the shorthand notations

𝐼𝜆 := 𝐼 (𝑠∗
1/𝜆ℑ) and ℑ𝜆 := 𝑠∗

1/𝜆ℑ.

If a section ℑ ∈ Γ(𝔐) does arise from a sequence of 𝐺2–instantons bubbling along 𝑃 , then

it is reasonable to expect that in the limit as 𝜆 → 0 the connection 𝐼𝜆 is “close to being a 𝐺2–

instanton”. To make sense of that notion we define the 4–form𝜓0 on 𝑁𝑃 to be the zeroth order

Taylor expansion of𝜓 := Θ(𝜙) off 𝑃 . More explicitly, we can write𝜓0 as

(4.4) 𝜓 := vol𝑁𝑃 − 𝑒1 ∧ 𝑒2 ∧ 𝜔𝑒3
− 𝑒2 ∧ 𝑒3 ∧ 𝜔𝑒1

− 𝑒3 ∧ 𝑒1 ∧ 𝜔𝑒2
.

Here (𝑒𝑖) is a local positive orthonormal frame on 𝑃 , (𝑒𝑖) is its dual frame, vol𝑁𝑃 is the fibre-wise

volume form on 𝑁𝑃 and 𝑣 ∈ 𝑇𝑃 ↦→ 𝜔𝑣 ∈ Λ+𝑁 ∗𝑃 is given by the identification (2.20). With this

notation set up the natural requirement is that

(4.5) lim

𝜆→0

𝜆−2𝑠∗
𝜆
(𝐹𝐼𝜆 ∧𝜓0) = 𝐹𝐼 ∧ (𝜓0 − vol𝑁𝑃 ) = 0.

If we introduce a bi-grading on 𝑘–forms on 𝑁𝑃 according to the splitting 𝑇𝑁𝑃 = 𝜋∗
1
𝑇𝑃 ⊕ 𝜋∗

2
𝑁𝑃

corresponding to the connection on 𝑁𝑃 with 𝜋1 : 𝑇𝑃 → 𝑃 and 𝜋2 : 𝑁𝑃 → 𝑃 denoting the

canonical projections, then it is easy to see that equation (4.5) splits into two parts. The first one is

simply the condition that the anti-self-dual part of 𝐹
0,2

𝐼
must vanish, while the second part is given

by

𝐹
1,1

𝐼
∧𝜓0 = 0.
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This condition can be understood as a partial differential equation on ℑ as follows. Define the

vertical tangent bundle 𝑉𝔐 to𝔐 by

𝑉𝔐 := (Fr(𝑁𝑃) × 𝐸∞) ×SO(4)×𝐺 𝑇𝑀.

If ℑ is a section of 𝔐, then the action of Λ+
on 𝑀 induces a Clifford multiplication 𝛾 : 𝑇𝑃 →

End(ℑ∗𝑉𝔐) in view of the identification (2.20). Moreover, the connections on 𝑁𝑃 and 𝐸∞ induce

a connection ∇ on𝔐 assigning to each section ℑ its covariant derivative ∇ℑ ∈ Ω1(ℑ∗𝑉𝔐).

Definition 4.6. The Fueter operator 𝔉 associated with 𝔐 is defined by

ℑ ∈ Γ(𝔐) ↦→ 𝔉ℑ :=

3∑︁
𝑖=1

𝛾 (𝑒𝑖)∇𝑖ℑ ∈ Γ(ℑ∗𝑉𝔐)

with (𝑒𝑖) a local orthonormal frame on 𝑃 . A section ℑ ∈ Γ(𝔐) is called a Fueter section if it satisfies
𝔉ℑ = 0.

Example 4.7. If 𝑀 is as in Example 3.4, then the Fueter operator 𝔉 lifts to the twisted Dirac

operator /𝐷 : Γ(Re(𝑆 ⊗C (𝐸∞ ⊕ 𝑈 )) → Γ(Re(𝑆 ⊗C (𝐸∞ ⊕ 𝑈 )), cf. Remark 2.23.

The Fueter operator𝔉 is compatible with the product structure on

𝔐 = ˚𝔐 × 𝑁𝑃

corresponding to𝑀 = �̊� × R4
. Its restriction to the second factor is given by the Fueter operator

𝐹𝑃 associated with 𝑃 .

Theorem 4.8 (Donaldson–Segal [DS11] and Haydys [Hay12]). If ℑ ∈ Γ(𝔐), then we can identify
Γ(ℑ∗𝑉𝔐) with a subspace of Ω1

(
𝑁𝑃, 𝔤𝐸 (ℑ)

)
. With respect to this identification we have the identity

𝔉ℑ = ∗0(𝐹 1,1

𝐼 (ℑ) ∧𝜓0)

where ∗0 is the Hodge–∗–operator on 𝑁𝑃 . In particular, 𝐼 (ℑ) satisfies equation (4.5) if and only if ℑ
is a Fueter section.

Definition 4.9. The linearised Fueter operator 𝐹ℑ = 𝐹ℑ,𝜙 : Γ(ℑ∗𝑉𝔐) → Γ(ℑ∗𝑉𝔐) for ℑ ∈ Γ(𝔐)
is defined by

(4.10) 𝐹ℑ,𝜙 ( ˆℑ) :=
∑︁
𝑖

𝛾 (𝑒𝑖)∇𝑖
ˆℑ

with (𝑒𝑖) a local orthonormal frame on 𝑃 .

Example 4.11. If𝑀 is as in Example 3.4, then the linearised Fueter operator 𝐹ℑ lifts to the twisted

Dirac operator /𝐷 : Γ(Re(/𝑆 ⊗C (𝐸∞ ⊕ 𝑈 )) → Γ(Re(/𝑆 ⊗C (𝐸∞ ⊕ 𝑈 )). In particular, it only depends

on the spin structure 𝔰 and not on ℑ.
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The operator 𝐹ℑ is self-adjoint and elliptic; however, it can never be invertible if ℑ is a Fueter

section ℑ. This is because Fueter sections come in 1–parameter families (ℑ𝜆)𝜆∈R+. In particular,

taking the derivative at 𝜆 = 1 yields an element in the kernel of 𝐹ℑ. If 𝑣 ∈ Γ(𝑉𝔐) denotes the
vector field generating the action of R+

on 𝔐, then we can succinctly write this element of the

kernel as 𝑣 ◦ ℑ.
Let (𝜙𝑡 )𝑡 ∈ (−𝑇,𝑇 ) be a family of torsion-free 𝐺2–structures on 𝑌 , let 𝐵0 be an unobstructed

𝐺2–instanton on a 𝐺–bundle 𝐸 over (𝑌, 𝜙0) and let 𝑃0 be an unobstructed associative submanifold

in (𝑌, 𝜙0). Then by Proposition 2.17 and Proposition 2.26 we obtain a family of 𝐺2–instantons

(𝐵𝑡 )𝑡 ∈ (−𝑇 ′,𝑇 ′ ) over (𝑌, 𝜙𝑡 ) and a family of associative submanifolds (𝑃𝑡 )𝑡 ∈ (−𝑇 ′,𝑇 ′ ) in (𝑌, 𝜙𝑡 ) for
some 𝑇 ′ ∈ (0,𝑇 ]. Now, carry out the above construction with 𝑃 = 𝑃𝑡 , 𝐸∞ = 𝐸 |𝑃𝑡 , 𝐴∞ = 𝐵𝑡 |𝑃𝑡 and
a fixed moduli space 𝑀 of framed finite energy ASD instantons to obtain a family of instanton

moduli bundles (𝔐𝑡 )𝑡 ∈ (−𝑇 ′,𝑇 ′ ) along with a family of Fueter operators (𝔉𝑡 )𝑡 ∈ (−𝑇 ′,𝑇 ′ ) . If ℑ0 is a

Fueter section of𝔐0 with

dim ker 𝐹ℑ0
= 1,

then, using the implicit function theorem, we obtain a family (ℑ𝑡 )𝑡 ∈ (−𝑇 ′,𝑇 ′ ) of sections of 𝔐𝑡

satisfying

𝔉𝑡ℑ𝑡 + 𝜇 (𝑡) · 𝑣 ◦ ℑ𝑡 = 0(4.12)

where 𝜇 : (−𝑇 ′,𝑇 ′) → R is a smooth function vanishing at zero.

Definition 4.13. In the above situation we say that ℑ0 is unobstructed with respect to (𝜙𝑡 ) if

𝜕𝜇

𝜕𝑡

����
𝑡=0

≠ 0.

Remark 4.14. One can work with a slightly weaker notion of unobstructedness where one only

requires that 𝜇 is strictly monotone near 𝑡 = 0. A slight variation of Theorem 1.2 still holds in this

case. We will pick up this thread again in Section 10.

Example 4.15. If𝑀 is as in Example 3.4, then equation (4.12) can be viewed as the spectral flow of

a family of twisted Dirac operators and ℑ0 is unobstructed if and only if this spectral flow has a

regular crossing at ℑ0.

5 Pregluing construction

In this section we begin the proof of Theorem 1.2 in earnest. Suppose that 𝑌 , (𝜙𝑡 )𝑡 ∈ (−𝑇,𝑇 ) , 𝐵, 𝑃
and ℑ ∈ Γ(𝔐) are as in the hypothesis of Theorem 1.2.

Convention 5.1. We fix constants 𝑇 ′ ∈ (0,𝑇 ] and Λ > 0 such that all of the statements of the kind

“if 𝑡 ∈ (−𝑇 ′,𝑇 ′) and 𝜆 ∈ (0,Λ], then . . . ” appearing in the following are valid. This is possible since

there is only a finite number of these statements and each one of them is valid provided 𝑇 ′
and Λ

are sufficiently small. By 𝑐 > 0 we will denote a generic constant whose value depends neither on

𝑡 ∈ (−𝑇 ′,𝑇 ′) nor on 𝜆 ∈ (0,Λ] but may change from one occurrence to the next.
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As discussed at the end of Section 4, 𝐵0 := 𝐵 and 𝑃0 := 𝑃 give rise to:

• a family (𝐵𝑡 )𝑡 ∈ (−𝑇 ′,𝑇 ′ ) of 𝐺2–instantons on 𝐸0 over (𝑌, 𝜙𝑡 ),

• a family of associative submanifolds (𝑃𝑡 )𝑡 ∈ (−𝑇 ′,𝑇 ′ ) in (𝑌, 𝜙𝑡 ) and, hence,

• a family of instanton moduli bundles (𝔐𝑡 )𝑡 ∈ (−𝑇 ′,𝑇 ′ ) with 𝔐0 = 𝔐 and Fueter operators

(𝔉𝑡 )𝑡 ∈ (−𝑇 ′,𝑇 ′ ) together with sections (ℑ𝑡 )𝑡 ∈ (−𝑇 ′,𝑇 ′ ) satisfying ℑ0 = ℑ and

(5.2) 𝔉𝑡ℑ𝑡 + 𝜇 (𝑡)𝑣 ◦ ℑ𝑡 = 0

where 𝜇 : (−𝑇 ′,𝑇 ′) → R is a smooth function vanishing at zero with

𝜕𝜇

𝜕𝑡

����
𝑡=0

≠ 0.

The proof of Theorem 1.2 proceeds via a gluing construction. As a first step we explain how to

construct approximate solutions.

Proposition 5.3. For each 𝑡 ∈ (−𝑇 ′,𝑇 ′) and 𝜆 ∈ (0,Λ] we can explicitly construct a 𝐺–bundle 𝐸𝑡,𝜆
together with a connection 𝐴𝑡,𝜆 = 𝐴𝑡#𝜆ℑ𝑡 from 𝐸0, 𝐴𝑡 ∈ A(𝐸0) and ℑ𝑡 . The bundles 𝐸𝑡,𝜆 are pairwise
isomorphic.

Before we embark on the proof, let us set up some notation. Fix a constant 𝜎 > 0 such that for

all 𝑡 ∈ (−𝑇 ′,𝑇 ′) the exponential map identifies a tubular neighbourhood of width 8𝜎 of 𝑃𝑡 in 𝑌

with a neighbourhood of the zero section in 𝑁𝑃𝑡 . For 𝐼 ⊂ R we set

𝑈𝐼 ,𝑡 := {𝑣 ∈ 𝑁𝑃𝑡 : |𝑣 | ∈ 𝐼 } and 𝑉𝐼 ,𝑡 := {𝑥 ∈ 𝑌 : 𝑟𝑡 (𝑥) ∈ 𝐼 }.

Here 𝑟𝑡 := 𝑑 (·, 𝑃𝑡 ) : 𝑌 → [0,∞) denotes the distance from 𝑃𝑡 . Fix a smooth-cut off function

𝜒 : [0,∞) → [0, 1] which vanishes on [0, 1] and is equal to one on [2,∞). For 𝑡 ∈ (−𝑇 ′,𝑇 ′) and
𝜆 ∈ (0,Λ] we define 𝜒−

𝑡,𝜆
: 𝑌 → [0, 1] and 𝜒+𝑡 : 𝑌 → [0, 1] by

𝜒−
𝑡,𝜆
(𝑥) := 𝜒 (𝑟𝑡 (𝑥)/2𝜆) and 𝜒+𝑡 (𝑥) := 1 − 𝜒 (𝑟𝑡 (𝑥)/2𝜎),

respectively.

Proof of Proposition 5.3. Via radial parallel transport we can identify 𝐸 (ℑ𝑡 ) over 𝑈 (𝑅,∞),𝑡 for some

𝑅 > 0 with the pullback of 𝐸 (ℑ𝑡 ) |∞ to said region and similarly we can identify 𝐸0 over 𝑉[0,𝜎 ),𝑡
with the pullback of 𝐸0 |𝑃𝑡 . Hence, via the framing Φ we can identify 𝑠∗

1/𝜆𝐸 (ℑ𝑡 ) with 𝐸0 on the

overlap 𝑉(𝜆,𝜎 ),𝑡 for 𝜆 ∈ (0,Λ]. Patching both bundles via this identification yields 𝐸𝑡,𝜆 .

To construct a connection on 𝐸𝑡,𝜆 note that on the overlap 𝐼𝑡,𝜆 := 𝑠∗
1/𝜆𝐼 (ℑ𝑡 ) and 𝐵𝑡 can be

written as

𝐼𝑡,𝜆 = 𝐵𝑡 |𝑃𝑡 + 𝑖𝑡,𝜆 and 𝐵𝑡 = 𝐵𝑡 |𝑃𝑡 + 𝑏𝑡 .
Here and in the following, by a slight abuse of notation, we denote by 𝐵𝑡 |𝑃𝑡 the pullback of 𝐵𝑡 |𝑃𝑡
to the overlap. We define 𝐴𝑡,𝜆 by interpolating between 𝐼𝜆 and 𝐵𝑡 on the overlap as follows

□(5.4) 𝐴𝑡,𝜆 := 𝐵𝑡 |𝑃𝑡 + 𝜒−𝑡,𝜆𝑏𝑡 + 𝜒
+
𝑡 𝑖𝑡,𝜆 .
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Now, in view of Proposition 2.11, the task at hand is to solve the equation

(5.5) ∗𝜙𝑡

(
𝐹𝐴𝑡,𝜆+𝑎 ∧𝜓𝑡

)
+ d𝐴𝑡,𝜆+𝑎𝜉 = 0

where 𝜓𝑡 := Θ(𝜙𝑡 ) = ∗𝜙𝑡
𝜙𝑡 , 𝑡 = 𝑡 (𝜆), 𝑎 = 𝑎(𝜆) and 𝜉 = 𝜉 (𝜆). If we could find an appropriate

analytic setup in which (𝑎, 𝜉) = 0 becomes closer and closer to being a solution of equation (5.5)

while at the same time the linearisations 𝐿𝑡,𝜆 := 𝐿𝐴𝑡,𝜆,𝜙𝑡
, as defined in (2.16), possess right inverses

that can be controlled uniformly in 𝑡 and 𝜆, then it would not be too difficult to solve equation (5.5)

for all 𝑡 ∈ (−𝑇 ′,𝑇 ′) and 𝜆 ∈ (0,Λ]. Since the properties of 𝐿𝑡,𝜆 are closely linked, among other

things, to those of 𝐹ℑ𝑡
and since 𝐹ℑ0

has a one-dimensional cokernel, however, we will only be

able to solve equation (5.5) “modulo the cokernel of 𝐹ℑ0
”. More precisely, when 𝑡 ∈ (−𝑇 ′,𝑇 ′) and

𝜆 ∈ (0,Λ] we will be able to solve the equation

(5.6) 𝐿𝑡,𝜆𝑎 + 𝜂 · 𝜄𝑡,𝜆𝑣 ◦ ℑ𝑡 +𝑄𝑡,𝜆 (𝑎) + 𝑒𝑡,𝜆 = 0

for 𝑎 = (𝜉, 𝑎) ∈ Ω0(𝑌, 𝔤𝐸𝑡,𝜆 ) ⊕ Ω1(𝑌, 𝔤𝐸𝑡,𝜆 ) and 𝜂 ∈ R with 𝑄𝑡,𝜆 and 𝑒𝑡,𝜆 defined by

(5.7) 𝑄𝑡,𝜆 (𝑎) :=
1

2

∗ ([𝑎 ∧ 𝑎] ∧𝜓𝑡 ) + [𝜉, 𝑎] .

and

𝑒𝑡,𝜆 := ∗(𝐹𝐴𝑡,𝜆
∧𝜓𝑡 ) + 𝜇 (𝑡) · 𝜄𝑡,𝜆𝑣 ◦ ℑ𝑡 ,

respectively. Here the map 𝜄𝑡,𝜆 : Γ(ℑ∗
𝑡𝑉𝔐𝑡 ) → Ω1(𝑌, 𝔤𝐸𝑡,𝜆 ) is defined by

𝜄𝑡,𝜆
ˆℑ := 𝜒+𝑡 𝑠

∗
1/𝜆

ˆℑ

wherewe first identify
ˆℑ ∈ Γ(ℑ∗

𝑡𝑉𝔐𝑡 ) with an element ofΩ1 (𝑁𝑃, 𝐸 (ℑ𝑡 )), then view the restriction

of its pullback via 𝑠−1

𝜆
to𝑈 [0,𝜎 ),𝑡 as lying in Ω1(𝑉[0,𝜎 ),𝑡 , 𝔤𝐸𝑡,𝜆 ) and finally extended it to all of 𝑌 by

multiplication with 𝜒+𝑡 . After solving (5.6) we are left with the residual scalar equation

𝜇 (𝑡) + 𝜂 (𝑡, 𝜆) = 0.

It will turn out that 𝜂 and 𝜕𝑡𝜂 go to zero as 𝜆 → 0. Since 𝜕𝑡𝜇 (0) ≠ 0, finding 𝑡 = 𝑡 (𝜆) such that

equation (5.5) is satisfied is then a simple consequence of an implicit function theorem.

Let us now discuss some aspects of the analysis. First of all we will introduce appropriate

weighted Hölder spaces in Section 6. One should think of these weighted spaces as a convenient

framework to deal with different local scales simultaneously. In our case they are constructed

to counteract the fact that the curvature of the connection 𝐴𝑡,𝜆 around 𝑃𝑡 becomes larger and

larger as 𝜆 → 0. We will see in Section 7 that the amount by which our approximate solutions

𝐴𝑡,𝜆 fail to be solutions of equation (5.5) “modulo the cokernel of 𝐹ℑ0
” measured in our weighted

Hölder norms goes to zero at a certain rate as 𝜆 → 0. The key difficulty then lies in analysing

the linearisation 𝐿𝑡,𝜆 . As is the case in most adiabatic limit constructions, the linearisation 𝐿𝑡,𝜆 is

rather badly behaved on an infinite dimensional space: For every
ˆℑ ∈ Γ(ℑ∗

𝑡𝑉𝔐𝑡 ) the appropriate
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norm of 𝜄𝑡,𝜆
ˆℑ is essentially independent of 𝜆, while the appropriate norm of 𝐿𝑡,𝜆𝜄𝑡,𝜆

ˆℑ tends to zero

as 𝜆 → 0. To overcome this issue it is convenient to split the problem at hand into a part coming

from Γ(ℑ∗
𝑡𝑉𝔐𝑡 ) and the part orthogonal to it. We define 𝜋𝑡,𝜆 : Ω1(𝑌, 𝔤𝐸𝑡,𝜆 ) → Γ(ℑ∗

𝑡𝑉𝔐𝑡 ) by

(𝜋𝑡,𝜆𝑎) (𝑥) :=
∑︁
𝜅

ˆ
𝑁𝑥𝑃

〈
𝑎, 𝜄𝑡,𝜆𝜅

〉
𝜅

for 𝑥 ∈ 𝑃𝑡 . Here 𝜅 runs through an orthonormal basis of (𝑉𝔐𝑡 )ℑ(𝑥 ) with respect to the inner

product

〈
𝜄𝑡,𝜆 ·, 𝜄𝑡,𝜆 ·

〉
. Clearly, 𝜋𝑡,𝜆𝜄𝑡,𝜆 = id; hence, 𝜋𝑡,𝜆 := 𝜄𝑡,𝜆𝜋𝑡,𝜆 is a projection. We denote the

complementary projection by 𝜌𝑡,𝜆 := id − 𝜋𝑡,𝜆 . If we define

𝔄𝑡,𝜆 := Ω0(𝑌, 𝔤𝐸𝑡,𝜆 ) ⊕ ker𝜋𝑡,𝜆,

then we can write

Ω0(𝑌, 𝔤𝐸𝑡,𝜆 ) ⊕ Ω1(𝑌, 𝔤𝐸𝑡,𝜆 ) = 𝔄𝑡,𝜆 ⊕ Γ(ℑ∗
𝑡𝑉𝔐𝑡 )

and decompose 𝐿𝑡,𝜆 accordingly into a 2–by–2 matrix of operators. We will see in Section 8 that

the diagonal entries can be controlled in terms of certain models on R7
, 𝐿𝐴0

and the linearised

Fueter operator 𝐹ℑ0
, while the off-diagonal terms are negligibly small. In Section 9 we discuss how

to control the non-linearity 𝑄𝑡,𝜆 in equation (5.6). The completion of the proof of Theorem 1.2 in

Section 10 will then be rather straight-forward.

6 Weighted Hölder norms

For 𝑡 ∈ (−𝑇 ′,𝑇 ′) and 𝜆 ∈ (0,Λ] we define a family of weight functions𝑤ℓ,𝛿 ;𝑡,𝜆 on 𝑌 depending on

two additional parameters ℓ, 𝛿 ∈ R as follows

𝑤ℓ,𝛿 ;𝑡,𝜆 (𝑥) :=

{
𝜆𝛿 (𝜆 + 𝑟𝑡 (𝑥))−ℓ−𝛿 if 𝑟𝑡 (𝑥) ⩽

√
𝜆

𝑟𝑡 (𝑥)−ℓ+𝛿 if 𝑟𝑡 (𝑥) >
√
𝜆

and set𝑤ℓ,𝛿 ;𝑡,𝜆 (𝑥,𝑦) := min{𝑤ℓ,𝛿 ;𝑡,𝜆 (𝑥),𝑤ℓ,𝛿 ;𝑡,𝜆 (𝑥)}. For a Hölder exponent 𝛼 ∈ (0, 1) and ℓ, 𝛿 ∈ R
we define (semi-)norms

∥ 𝑓 ∥𝐿∞
ℓ,𝛿 ;𝑡,𝜆

(𝑈 ) := ∥𝑤ℓ,𝛿 ;𝑡,𝜆 𝑓 ∥𝐿∞ (𝑈 ) ,

[𝑓 ]
𝐶

0,𝛼

ℓ,𝛿 ;𝑡,𝜆
(𝑈 ) := sup

𝑥≠𝑦∈𝑈 :

𝑑 (𝑥,𝑦)⩽𝜆+min{𝑟𝑡 (𝑥 ),𝑟𝑡 (𝑦) }

𝑤ℓ−𝛼,𝛿 ;𝑡,𝜆 (𝑥,𝑦)
|𝑓 (𝑥) − 𝑓 (𝑦) |
𝑑 (𝑥,𝑦)𝛼 and

∥ 𝑓 ∥
𝐶
𝑘,𝛼

ℓ,𝛿 ;𝑡,𝜆
(𝑈 ) :=

𝑘∑︁
𝑗=0

∥∇ 𝑗 𝑓 ∥𝐿∞
ℓ− 𝑗,𝛿 ;𝑡,𝜆

(𝑈 ) + [∇ 𝑗 𝑓 ]
𝐶

0,𝛼

ℓ− 𝑗,𝛿 ;𝑡,𝜆

.

Here 𝑓 is a section of a vector bundle over𝑈 ⊂ 𝑌 equipped with an inner product and a compatible

connection. We use parallel transport to compare the values of 𝑓 at different points. If 𝑈 is not

specified, then we take𝑈 = 𝑌 . We will primarily use this norm for 𝔤𝐸𝑡,𝜆–valued tensor fields.
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Remark 6.1. The reader may find the following heuristic useful. Let 𝑓 be a 𝑘–form on 𝑌 . Fix a

small ball centred at a point 𝑥 ∈ 𝑃𝑡 , identify it with a small ball in 𝑇𝑥𝑌 = 𝑇𝑥𝑃𝑡 ⊕ 𝑁𝑥𝑃𝑡 and rescale

this ball by a factor 1/𝜆. Upon pulling everything back to this rescaled ball the weight function

𝑤−𝑘,𝛿,𝑡,𝜆 becomes essentially 𝜆𝑘 (1 + |𝑦 |)𝑘−𝛿 , where 𝑦 denotes the 𝑁𝑥𝑃𝑡–coordinate. Thus as 𝜆 goes

to zero a uniform bound ∥ 𝑓𝜆 ∥𝐿∞−𝑘,𝛿,𝑡,𝜆 on a family (𝑓𝜆) of 𝑘–forms ensures that the pullbacks of 𝑓𝜆

decay like |𝑦 |−𝑘+𝛿 in the direction of 𝑁𝑥𝑃𝑡 . At the same time it forces 𝑓𝜆 not to blowup at a rate

faster than 𝑟−𝑘−𝛿𝑡 along 𝑃𝑡 . The “discrepancy” in the exponents can be seen to be rather natural by

considering the action of the inversion 𝑦 ↦→ 𝜆𝑦/|𝑦 |2.
Proposition 6.2. If (𝑓 , 𝑔) ↦→ 𝑓 · 𝑔 is a bilinear form satisfying |𝑓 · 𝑔| ⩽ |𝑓 | |𝑔|, then

∥ 𝑓 · 𝑔∥
𝐶
𝑘,𝛼

ℓ
1
+ℓ

2
,𝛿

1
+𝛿

2
;𝑡,𝜆

⩽ ∥ 𝑓 ∥
𝐶
𝑘,𝛼

ℓ
1
,𝛿

1
;𝑡,𝜆

∥𝑔∥
𝐶
𝑘,𝛼

ℓ
2
,𝛿

2
;𝑡,𝜆

.

Proof. This follows immediately from the above definition. □

Corollary 6.3. If 𝛿 < 0, then there is a constant 𝑐 > 0 which is independent of 𝑡 ∈ (−𝑇 ′,𝑇 ′) and
𝜆 ∈ (0,Λ] such that

∥ 𝑓 ∥
𝐶
𝑘,𝛼

ℓ,𝛿 ;𝑡,𝜆

⩽ 𝑐𝜆𝛿/2∥ 𝑓 ∥
𝐶
𝑘,𝛼

ℓ,0;𝑡,𝜆

and ∥ 𝑓 ∥
𝐶
𝑘,𝛼

ℓ,0;𝑡,𝜆

⩽ 𝑐 ∥ 𝑓 ∥
𝐶
𝑘,𝛼

ℓ,𝛿 ;𝑡,𝜆

Proof. Use ∥1∥
𝐶
𝑘,𝛼

0,𝛿 ;𝑡,𝜆

⩽ 𝑐𝜆𝛿/2
and ∥1∥

𝐶
𝑘,𝛼

0,−𝛿 ;𝑡,𝜆

⩽ 𝑐 for 𝛿 < 0. □

Proposition 6.4. For ℓ ⩽ −1 and 𝛿 ∈ R such that ℓ − 𝛼 + 𝛿 > −3 and ℓ + 𝛿 < −1 there is a constant
𝑐 > 0 such that for all 𝑡 ∈ (−𝑇 ′,𝑇 ′) and 𝜆 ∈ (0,Λ] we have

∥𝜄𝑡,𝜆 ˆℑ∥
𝐶

0,𝛼

ℓ,𝛿 ;𝑡,𝜆

⩽ 𝑐𝜆−1−ℓ ∥ ˆℑ∥𝐶0,𝛼 and

∥𝜋𝑡,𝜆𝑎∥𝐶0,𝛼 ⩽ 𝑐𝜆1+ℓ−𝛼 ∥𝑎∥
𝐶

0,𝛼

ℓ,𝛿 ;𝑡,𝜆
(𝑉[0,𝜎 ) ;𝑡 ) .

In particular, 𝜋𝑡,𝜆 = 𝜄𝑡,𝜆𝜋𝑡,𝜆 and 𝜌𝑡,𝜆 are bounded by 𝑐𝜆−𝛼 with respect to the 𝐶0,𝛼

ℓ,𝛿 ;𝑡,𝜆
–norms.

Proof. From Proposition 3.2 it follows at once that

∥𝑠∗
1/𝜆

ˆℑ∥
𝐶

0,𝛼

−3,0;𝑡,𝜆 (𝑉[0,𝜎 ),𝑡 ) ⩽ 𝑐𝜆
2∥ ˆℑ∥𝐶0,𝛼 .

The first inequality thus is a consequence of Proposition 6.2 since ∥𝜒+𝑡 ∥𝐶0,𝛼

3+ℓ,𝛿 ;𝑡,𝜆

⩽ 𝑐𝜆−3−ℓ
for

ℓ + 𝛿 > −3.

To prove the second inequality, note that by Proposition 3.2 for 𝜅 ∈ (𝑉𝔐𝑡 )ℑ𝑡 (𝑥 ) we have

|𝑠∗
1/𝜆𝜅 | (𝑥) ⩽ 𝑐𝜆

2/(𝜆 + |𝑥 |)3∥𝜅∥𝐿2 and thus

ˆ
𝑁𝑥𝑃

〈
𝑎, 𝜒+𝑡 𝑠

∗
1/𝜆𝜅

〉
⩽ 𝑐

ˆ √
𝜆

0

𝜆2−𝛿 (𝜆 + 𝑟 )ℓ+𝛿−3𝑟 3
d𝑟 · ∥𝑎∥𝐿∞

ℓ,𝛿 ;𝑡,𝜆
∥𝜅∥𝐿2

+ 𝑐
ˆ 𝜎

√
𝜆

𝜆2𝑟 ℓ−𝛿 (𝜆 + 𝑟 )−3𝑟 3
d𝑟 · ∥𝑎∥𝐿∞

ℓ,𝛿 ;𝑡,𝜆
∥𝜅∥𝐿2

⩽ 𝑐𝜆3+ℓ ∥𝑎∥𝐿∞
ℓ,𝛿 ;𝑡,𝜆

∥𝜅∥𝐿2
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since ℓ ⩽ −1 and ℓ +𝛿 < −1. If 𝜅 is an element of an orthonormal basis of (𝑉𝔐𝑡 )ℑ𝑡 (𝑥 ) with respect

to

〈
𝜄𝑡,𝜆 ·, 𝜄𝑡,𝜆 ·

〉
, then ∥𝜅∥𝐿2 ⩽ 𝑐/𝜆 since for 𝜅1, 𝜅2 ∈ (𝑉𝔐𝑡 )ℑ𝑡 (𝑥 )

𝜆2 ⟨𝜅1, 𝜅2⟩𝐿2 ∼
〈
𝜒+𝑡 𝑠

∗
1/𝜆𝜅1, 𝜒

+
𝑡 𝑠

∗
1/𝜆𝜅2

〉
𝐿2

where ∼ means comparable uniformly in 𝑡 and 𝜆. Therefore,

∥𝜋𝑡,𝜆𝑎∥𝐿∞ ⩽ 𝑐𝜆1+ℓ ∥𝑎∥𝐿∞
ℓ,𝛿 ;𝑡,𝜆

.

The estimates on the Hölder norms follow by the same kind of argument. □

7 Pregluing estimate

In the following we will need to differentiate various tensors over 𝑌 and 𝑁𝑃𝑡 depending on

𝑡 ∈ (−𝑇,𝑇 ). For tensors over 𝑌 we could simply differentiate using 𝜕𝑡 ; however, 𝜕𝑡 does not

drag 𝑃𝑡 along in a parallel fashion, which causes some additional error terms to show up, and

also it is preferable to differentiate tensors over 𝑌 and 𝑁𝑃𝑡 in way that is consistent with the

identification 𝑉𝐼 ,𝑡 = 𝑈𝐼 ,𝑡 for 𝐼 ⊂ [0, 2𝜎). Therefore we use a fixed set of connections constructed

as follows: For each 𝑡 ∈ (−𝑇 ′,𝑇 ′) we can write 𝑃𝑡 = {exp𝑝 (𝑣𝑡 ) : 𝑝 ∈ 𝑃0} for some unique

normal vector field 𝑣𝑡 ∈ Γ(𝑃0, 𝑁𝑃0); hence, the bundle
∐

𝑡 ∈ (−𝑇 ′,𝑇 ′ ) 𝑃𝑡 → (−𝑇 ′,𝑇 ′) comes with

a canonical connection. Pick a connection on N :=
∐

𝑡 ∈ (−𝑇 ′,𝑇 ′ ) 𝑁𝑃𝑡 → (−𝑇 ′,𝑇 ′) such that

for each parallel path 𝑡 ↦→ 𝑝𝑡 ∈ 𝑃𝑡 its lift to the zero section 𝑡 ↦→ 0𝑝𝑡 ∈ 𝑁𝑃𝑡 is also parallel.

Moreover, we pick a connection on 𝑌 × (−𝑇 ′,𝑇 ′) → (−𝑇 ′,𝑇 ′) which agrees with the connection

on N on

⋃
𝑡 ∈ (−𝑇 ′,𝑇 ′ ) 𝑉[0,2𝜎 ),𝑡 =

⋃
𝑡 ∈ (−𝑇 ′,𝑇 ′ ) 𝑈 [0,2𝜎 ),𝑡 and with 𝜕𝑡 on 𝑌\

⋃
𝑡 ∈ (−𝑇 ′,𝑇 ′ ) 𝑉[0,4𝜎 ),𝑡 . These

connections induce various connections on bundles of tensors over 𝑌 and 𝑁𝑃𝑡 ; we denote the

associated covariant derivatives by ∇𝑡 .

Proposition 7.1. There is a constant 𝑐 > 0 such that for 𝑡 ∈ (−𝑇 ′,𝑇 ′) and 𝜆 ∈ (0,Λ] we have

∥𝑒𝑡,𝜆 ∥𝐶0,𝛼

−2,0;𝑡,𝜆

⩽ 𝑐𝜆2 and ∥∇𝑡𝑒𝑡,𝜆 ∥𝐶0,𝛼

−2,0;𝑡,𝜆

⩽ 𝑐𝜆2.

The proof of this result requires some preparation.

Proposition 7.2. In the tubular neighbourhood 𝑉[0,𝜎 ) ;𝑡 of 𝑃𝑡 we can write𝜓𝑡 := Θ(𝜙𝑡 ) = ∗𝜙𝑡
𝜙𝑡 as

𝜓𝑡 = 𝜓0;𝑡 +𝜓1;𝑡 +𝜓⩾2;𝑡

where𝜓0;𝑡 is defined as in equation (4.4),𝜓1;𝑡 takes values in Λ2𝑇 ∗𝑃𝑡 ⊗ Λ+𝑁 ∗𝑃𝑡 . Moreover,𝜓0;𝑡 ,𝜓1;𝑡

and 𝜓⩾2;𝑡 depend continuously differentiably on 𝑡 , and there is a constant 𝑐 > 0 such that for all
𝑡 ∈ (−𝑇 ′,𝑇 ′) we have

∥𝜓0;𝑡 ∥𝐶0,𝛼

0,0;𝑡,𝜆
(𝑉[0,𝜎 ) ;𝑡 ) + ∥𝜓1;𝑡 ∥𝐶0,𝛼

1,0;𝑡,𝜆
(𝑉[0,𝜎 ) ;𝑡 ) + ∥𝜓⩾2;𝑡 ∥𝐶0,𝛼

2,0;𝑡,𝜆
(𝑉[0,𝜎 ) ;𝑡 ) ⩽ 𝑐

and
∥∇𝑡𝜓0;𝑡 ∥𝐶0,𝛼

0,0;𝑡,𝜆
(𝑉[0,𝜎 ) ;𝑡 ) + ∥∇𝑡𝜓1;𝑡 ∥𝐶0,𝛼

1,0;𝑡,𝜆
(𝑉[0,𝜎 ) ;𝑡 ) + ∥∇𝑡𝜓⩾2;𝑡 ∥𝐶0,𝛼

2,0;𝑡,𝜆
(𝑉[0,𝜎 ) ;𝑡 ) ⩽ 𝑐.
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Proof of Proposition 7.2. Let 𝑃 = 𝑃𝑡 and 𝜓 = 𝜓𝑡 . If we pull the identity map of a tubular neigh-

bourhood of 𝑃 back to a tubular neighbourhood of the zero section of 𝑁𝑃 via the exponential

map, then the Taylor expansion of its derivative around 𝑃 can be expressed in the splitting

𝑇𝑁𝑃 = 𝜋∗
1
𝑇𝑃 ⊕ 𝜋∗

2
𝑁𝑃 as

(𝑥,𝑦) ↦→ (𝑥,𝑦) +
(
II𝑦 (𝑥), 𝑦

)
+𝑂

(
|𝑦 |2

)
where II is the second fundamental form of 𝑃 in 𝑌 which we think of as a map from 𝑁𝑃 to

End(𝑇𝑃). This immediately yields the desired expansion of 𝜓 near 𝑃 , with 𝜓1 taking values in

Λ2𝑇 ∗𝑃⊗Λ+𝑁 ∗𝑃 , since we know that𝜓 is given by𝜓0 along 𝑃 . Moreover, we have ∇𝑘𝜓1 = 𝑂
(
|𝑦 |1−𝑘

)
and ∇𝑘𝜓⩾2 = 𝑂

(
|𝑦 |2−𝑘

)
for 𝑘 = 0, 1 which implies the first estimate and, since everything depends

smoothly on 𝑡 , also the second estimate. □

The same reasoning also proves the following result.

Proposition 7.3. There is a constant 𝑐 > 0 such that for all 𝑡 ∈ (−𝑇 ′,𝑇 ′) and 𝜆 ∈ (0,Λ] we have

∥ ∗0 − ∗ ∥
𝐶

0,𝛼

1,0;𝑡,𝜆
(𝑉[0,𝜎 ) ;𝑡 ) + ∥∇𝑡 (∗0 − ∗)∥

𝐶
0,𝛼

1,0;𝑡,𝜆
(𝑉[0,𝜎 ) ;𝑡 ) ⩽ 𝑐.

Proposition 7.4. There is a constant 𝑐 > 0 such that for all 𝑡 ∈ (−𝑇 ′,𝑇 ′) and 𝜆 ∈ (0,Λ] we have𝐹 2,0

𝐼𝑡,𝜆
− 𝐹𝐵𝑡 |𝑃𝑡


𝐶

0,𝛼

−2,0;𝑡,𝜆
(𝑉[0,𝜎 ) ;𝑡 )

+
∇𝑡

(
𝐹

2,0

𝐼𝑡,𝜆
− 𝐹𝐵𝑡 |𝑃𝑡

)
𝐶

0,𝛼

−2,0;𝑡,𝜆
(𝑉[0,𝜎 ) ;𝑡 )

⩽ 𝑐𝜆2,𝐹 1,1

𝐼𝑡,𝜆


𝐶

0,𝛼

−3,0;𝑡,𝜆
(𝑉[0,𝜎 ) ;𝑡 )

+
∇𝑡𝐹

1,1

𝐼𝑡,𝜆


𝐶

0,𝛼

−3,0;𝑡,𝜆
(𝑉[0,𝜎 ) ;𝑡 )

⩽ 𝑐𝜆2

and
𝐹 0,2

𝐼𝑡,𝜆


𝐶

0,𝛼

−4,0;𝑡,𝜆
(𝑉[0,𝜎 ) ;𝑡 )

+
∇𝑡𝐹

0,2

𝐼𝑡,𝜆


𝐶

0,𝛼

−4,0;𝑡,𝜆
(𝑉[0,𝜎 ) ;𝑡 )

⩽ 𝑐𝜆2.

Proof. Theorem 4.3 asserts that the restriction of 𝐼𝑡 = 𝐼 (ℑ𝑡 ) to the section at infinity agrees with

𝐵𝑡 |𝑃𝑡 . For a local coordinate system (𝑧1, . . . , 𝑧3,𝑤1, . . . ,𝑤4) based at a point on the section at infinity
and with 𝑧𝑖 denoting the coordinates along 𝑃𝑡 and𝑤𝑖 denote transverse coordinates we can write

𝐼𝑡 = 𝐵𝑡 |𝑃𝑡 +
∑︁
𝑖, 𝑗

𝑤𝑖 (𝜉𝑖 𝑗d𝑧 𝑗 + 𝜂𝑖 𝑗d𝑤 𝑗 ) +𝑂 ( |𝑤 |2)

for 𝜉𝑖 𝑗 , 𝜂𝑖 𝑗 ∈ 𝔤. It follows that 𝐹
1,1

𝐼𝑡
= −∑

4

𝑖, 𝑗=1
𝜉𝑖 𝑗d𝑧𝑖 ∧ d𝑤 𝑗 +𝑂 ( |𝑤 |). However, by Proposition 3.6

and the paragraph after Theorem 4.3, for any fixed 𝑣 ∈ 𝑇𝑥𝑃𝑡 , 𝑖 (𝑣)𝐹 1,1

𝐼𝑡
∈ ker𝛿ℑ𝑡 (𝑝 ) ; hence, by

Proposition 3.2 this curvature component decays like 𝑟−3
when viewed from the zero section. This

translates into 𝜉𝑖 𝑗 = 0, and we can write

(7.5) 𝐼𝑡 = 𝐵𝑡 |𝑃𝑡 +
4∑︁

𝑖, 𝑗=1

𝜂𝑖 𝑗𝑤𝑖d𝑤 𝑗 +𝑂 ( |𝑤 |2) .
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Hence, 𝐹
2,0

𝐼𝑡
− 𝐹𝐵𝑡 |𝑃𝑡 vanishes to first order along the section at infinity which when viewed

from the zero section in 𝑁𝑃𝑡 means that���𝐹 2,0

𝐼𝑡
− 𝐹𝐵𝑡 |𝑃𝑡

��� ⩽ 𝑐

1 + |𝑦 |2 .

The first estimate now follows from a simple scaling consideration and by realising that the above

reasoning also applies to ∇𝑡

(
𝐹

2,0

𝐼𝑡
− 𝐹𝐵𝑡 |𝑃𝑡

)
.

The last two estimates follow from Theorem 4.3, Proposition 3.2, the fact that the curvature of

a finite energy ASD instanton decays at least like |𝑦 |−4
and simple scaling considerations. □

Proposition 7.6. There is a constant 𝑐 > 0 such that for all 𝑡 ∈ (−𝑇 ′,𝑇 ′) and 𝜆 ∈ (0,Λ] we have

∥𝑖𝑡,𝜆 ∥𝐶0,𝛼

−3,0;𝑡,𝜆
(𝑉(𝜆,𝜎 ) ;𝑡 ) + ∥d𝐼𝑡,𝜆𝑖𝑡,𝜆 ∥𝐶0,𝛼

−4,0;𝑡,𝜆
(𝑉(𝜆,𝜎 ) ;𝑡 ) ⩽ 𝑐𝜆

2 and

∥∇𝑡𝑖𝑡,𝜆 ∥𝐶0,𝛼

−3,0;𝑡,𝜆
(𝑉(𝜆,𝜎 ) ;𝑡 ) + ∥∇𝑡 (d𝐼𝑡,𝜆𝑖𝑡,𝜆)∥𝐶0,𝛼

−4,0;𝑡,𝜆
(𝑉(𝜆,𝜎 ) ;𝑡 ) ⩽ 𝑐𝜆

2

as well as

∥𝑏𝑡 ∥𝐶0,𝛼

1,0;𝑡,𝜆
(𝑉[0,𝜎 ) ;𝑡 ) + ∥d𝐵𝑡 |𝑃𝑡 𝑏𝑡 ∥𝐶0,𝛼

0,0;𝑡,𝜆
(𝑉[0,𝜎 ) ;𝑡 ) ⩽ 𝑐 and

∥∇𝑡𝑏𝑡 ∥𝐶0,𝛼

1,0;𝑡,𝜆
(𝑉[0,𝜎 ) ;𝑡 ) + ∥∇𝑡 (d𝐵𝑡 |𝑃𝑡 𝑏𝑡 )∥𝐶0,𝛼

0,0;𝑡,𝜆
(𝑉[0,𝜎 ) ;𝑡 ) ⩽ 𝑐.

Proof. The first two estimates follow from (7.5) and a simple scaling consideration, while the

last two estimates follow from the fact that we put 𝐵𝑡 into radial gauge from the zero section in

𝑁𝑃𝑡 . □

Proof of Proposition 7.1. We proceed in four steps. First we estimate 𝑒𝑡,𝜆 , an approximation of 𝑒𝑡,𝜆 .

Then we estimate the difference 𝑒𝑡,𝜆 − 𝑒𝑡,𝜆 separately in the three subsets 𝑉[0,𝜆) ;𝑡 , 𝑉[𝜆,𝜎/2) ;𝑡 and
𝑉[𝜎/2,𝜎 ) ;𝑡 constituting 𝑉[0,𝜎 ) ;𝑡 which contains the support of 𝑒𝑡,𝜆 .

It will be convenient to use the following shorthand notation

∥ 𝑓 ∥ℓ,𝑈 := ∥ 𝑓 ∥
𝐶

0,𝛼

ℓ,0;𝑡,𝜆
(𝑈 ) + ∥∇𝑡 𝑓 ∥𝐶0,𝛼

ℓ,0;𝑡,𝜆
(𝑈 ) .

Note that if (𝑓 , 𝑔) ↦→ 𝑓 · 𝑔 is a bilinear map satisfying |𝑓 · 𝑔| ⩽ |𝑓 | |𝑔| and the Leibniz rule with

respect to ∇𝑡 , then it follows from Proposition 6.2 that ∥ 𝑓 · 𝑔∥ℓ1+ℓ2,𝑈 ⩽ ∥ 𝑓 ∥ℓ1,𝑈 · ∥𝑔∥ℓ2,𝑈 .

Step 1. The term
𝑒𝑡,𝜆 := ∗

[(
𝐹𝐼𝑡,𝜆 − 𝐹𝐵𝑡 |𝑃𝑡

)
∧𝜓𝑡

]
+ 𝜇 (𝑡) · 𝑣 ◦ ℑ𝑡,𝜆

satisfies ∥𝑒𝑡,𝜆 ∥−2,𝑉[0,𝜎 ) ;𝑡 ⩽ 𝑐𝜆
2.
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Because of Theorem 4.8, the fact that 𝐹
0,2

𝐼𝑡,𝜆
is anti-self-dual and Proposition 7.2 we can write

𝑒𝑡,𝜆 on 𝑉[0,𝜎 ) ;𝑡 as

𝑒𝑡,𝜆 = ∗
[(
𝐹𝐼𝑡,𝜆 − 𝐹𝐵𝑡 |𝑃𝑡

)
2,0

∧𝜓𝑡
]
+ ∗

[
𝐹

1,1

𝐼𝑡,𝜆
∧ (𝜓1;𝑡 +𝜓⩾2;𝑡 )

]
+ ∗

(
𝐹

0,2

𝐼𝑡,𝜆
∧𝜓⩾2;𝑡

)
+ (∗ − ∗0)

(
𝐹

1,1

𝐼𝑡,𝜆
∧𝜓0;𝑡

)
.

Using Proposition 7.2 and Proposition 7.4 as well as ∥1∥−1,𝑉[0,𝜎 ) ;𝑡 ⩽ 𝑐 we estimate ∥𝑒𝑡,𝜆 ∥−2,𝑉[0,𝜎 ) ;𝑡 by(𝐹𝐼𝑡,𝜆 − 𝐹𝐵𝑡 |𝑃𝑡

)
2,0

−2,𝑉[0,𝜎 ) ;𝑡

· ∥𝜓𝑡 ∥0,𝑉[0,𝜎 ) ;𝑡

+
𝐹 1,1

𝐼𝑡,𝜆


−3,𝑉[0,𝜎 ) ;𝑡

·
(
∥𝜓1;𝑡 ∥1,𝑉[0,𝜎 ) ;𝑡 + ∥1∥−1,𝑉[0,𝜎 ) ;𝑡 · ∥𝜓⩾2;𝑡 ∥2,𝑉[0,𝜎 ) ;𝑡

)
+
𝐹 0,2

𝐼𝑡,𝜆


−4,𝑉[0,𝜎 ) ;𝑡

· ∥𝜓⩾2;𝑡 ∥2,𝑉[0,𝜎 ) ;𝑡

+ ∥ ∗ − ∗0 ∥1,𝑉[0,𝜎 ) ;𝑡 ·
𝐹 1,1

𝐼𝑡,𝜆


−3,𝑉[0,𝜎 ) ;𝑡

· ∥𝜓0;𝑡 ∥0,𝑉[0,𝜎 ) ;𝑡 ⩽ 𝑐𝜆
2.

This proves the assertion.

Step 2. We prove that ∥𝑒𝑡,𝜆 − 𝑒𝑡,𝜆 ∥𝑉[0,𝜆) ;𝑡 ⩽ 𝑐𝜆
2.

Since 𝐹𝐵𝑡 |𝑃𝑡 ∧𝜓𝑡

−2,𝑉[0,𝜆) ;𝑡

⩽ ∥1∥−2,𝑉[0,𝜆) ;𝑡 ·
𝐹𝐵𝑡 |𝑃𝑡 ∧𝜓𝑡


0,𝑉[0,𝜆) ;𝑡

⩽ 𝑐𝜆2,

it suffices to estimate 𝐹𝐴𝑡,𝜆
− 𝐹𝐼𝑡,𝜆 in 𝑉[0,𝜆) ;𝑡 . Now, in 𝑉[0,𝜆) ;𝑡 the curvature of 𝐴𝑡,𝜆 is given by

𝐹𝐴𝑡,𝜆
= 𝐹𝐼𝑡,𝜆 + 𝜒−𝑡,𝜆d𝐼𝑡,𝜆𝑏𝑡 +

1

2

(𝜒−
𝑡,𝜆
)2 [𝑏𝑡 ∧ 𝑏𝑡 ] + d𝜒−

𝑡,𝜆
∧ 𝑏𝑡 .

Using Proposition 7.6 and the fact that the cut-off functions 𝜒−
𝑡,𝜆

where constructed so that

∥𝜒−
𝑡,𝜆
∥0,𝑉[0,𝜎 ) + ∥d𝜒−

𝑡,𝜆
∥−1,𝑉[0,𝜎 ) ⩽ 𝑐 we obtain

∥𝐹𝐴𝑡,𝜆
− 𝐹𝐼𝑡,𝜆 ∥−2,𝑉[0,𝜆) ;𝑡

⩽ ∥1∥−2,𝑉[0,𝜆) ;𝑡 · ∥𝜒−𝑡,𝜆 ∥0,𝑉[0,𝜆) ;𝑡 · ∥d𝐵𝑡 |𝑃𝑡 𝑏𝑡 ∥0,𝑉[0,𝜆) ;𝑡

+ ∥𝜒−
𝑡,𝜆
∥0,𝑉[0,𝜆) ;𝑡 · ∥𝑖𝑡,𝜆 ∥−3,𝑉(𝜆,𝜎 ) ;𝑡 · ∥𝑏𝑡 ∥1,𝑉[0,𝜆) ;𝑡

+ 1

2

∥1∥−4,𝑉[0,𝜆) ;𝑡 · ∥𝜒−𝑡,𝜆 ∥
2

0,𝑉[0,𝜆) ;𝑡
· ∥𝑏𝑡 ∥2

1,𝑉[0,𝜆) ;𝑡

+ ∥1∥−2,𝑉[0,𝜆) ;𝑡 · ∥d𝜒−
𝑡,𝜆
∥−1,𝑉[0,𝜆) ;𝑡 · ∥𝑏𝑡 ∥1,𝑉[0,𝜆) ;𝑡 ⩽ 𝑐𝜆

2.

Step 3. We prove that ∥𝑒𝑡,𝜆 − 𝑒𝑡,𝜆 ∥𝑉(𝜆,𝜎/2) ;𝑡 ⩽ 𝑐𝜆
2.

This is an immediate consequence of 𝐹𝐵𝑡
∧𝜓𝑡 = 0 and Proposition 7.6 since in 𝑉[𝜆,𝜎/2) ;𝑡 the

curvature of 𝐴𝑡,𝜆 is given by 𝐹𝐴𝑡,𝜆
= 𝐹𝐵𝑡

+ [𝑖𝑡,𝜆 ∧ 𝑏𝑡 ] + 𝐹𝐼𝑡,𝜆 − 𝐹𝐵𝑡 |𝑃𝑡 .
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Step 4. We prove that ∥𝑒𝑡,𝜆 − 𝑒𝑡,𝜆 ∥𝑉[𝜎/2,𝜎 ) ;𝑡 ⩽ 𝑐𝜆
2.

In 𝑉[𝜎/2,𝜎 ) ;𝑡 the curvature of 𝐴𝑡,𝜆 is given by

𝐹𝐴𝑡,𝜆
= 𝐹𝐵𝑡

+ 𝜒+𝑡 d𝐵𝑡
𝑖𝑡,𝜆 +

1

2

(𝜒+𝑡 )2 [𝑖𝑡,𝜆 ∧ 𝑖𝑡,𝜆] + d𝜒+𝑡 ∧ 𝑖𝑡,𝜆 .

Since ∥𝜒+𝑡 ∥ℓ,𝑉[𝜎/2,𝜎 ) ;𝑡 + ∥d𝜒+𝑡 ∥ℓ,𝑉[𝜎/2,𝜎 ) ;𝑡 ⩽ 𝑐 , it follows that

∥𝐹𝐴𝑡,𝜆
− 𝐹𝐵𝑡

∥−2,𝑉[𝜎/2,𝜎 ) ;𝑡

⩽ ∥𝜒+𝑡 ∥2,𝑉[𝜎/2,𝜎 ) ;𝑡 · ∥d𝐼𝑡,𝜆𝑖𝑡,𝜆 ∥−4,𝑉[𝜎/2,𝜎 ) ;𝑡

+ ∥𝜒+𝑡 ∥0,𝑉[𝜎/2,𝜎 ) ;𝑡 · ∥𝑏𝑡 ∥1,𝑉[𝜎/2,𝜎 ) ;𝑡 · ∥𝑖𝑡,𝜆 ∥−3,𝑉[𝜎/2,𝜎 ) ;𝑡

+ 1

2

∥𝜒+𝑡 ∥2

2,𝑉[𝜎/2,𝜎 ) ;𝑡
· ∥𝑖𝑡,𝜆 ∥2

−3,𝑉[𝜎/2,𝜎 ) ;𝑡

+ ∥d𝜒+𝑡 ∥1,𝑉[𝜎/2,𝜎 ) ;𝑡 · ∥𝑖𝑡,𝜆 ∥−3,𝑉[𝜎/2,𝜎 ) ;𝑡 ⩽ 𝑐𝜆
2.

We are thus left with estimating

∥𝜄𝑡,𝜆𝑣 ◦ ℑ𝑡 − 𝑣 ◦ ℑ𝑡,𝜆 ∥−2,𝑉[𝜎/2,𝜎 ) ;𝑡 ⩽ 𝑐 ∥𝜒+𝑡 − 1∥1,𝑉[𝜎/2,𝜎 ) ;𝑡 · ∥𝑣 ◦ ℑ𝑡,𝜆 ∥−3,𝑉[𝜎/2,𝜎 ) ;𝑡 .

To conclude the proof we observe that ∥𝜒+𝑡 − 1∥1,𝑉[𝜎/2,𝜎 ) ;𝑡 ⩽ 𝑐 and that

(7.7) ∥ ˆℑ𝜆 ∥𝐶𝑘,𝛼

−3,0;𝑡,𝜆
(𝑉[0,𝜎 ) ;𝑡 ) ⩽ 𝑐𝜆

2∥ ˆℑ∥𝐶𝑘,𝛼

as a consequence of Proposition 3.2 and a simple scaling consideration. □

8 Linear estimates

We denote by 𝔛𝑡,𝜆 and 𝔜𝑡,𝜆 the Banach spaces 𝐶1,𝛼 ⊕ R and 𝐶0,𝛼 ⊕ R equipped with the norms

∥(𝑎, 𝜂)∥𝔛𝑡,𝜆
:= 𝜆−𝛿/2∥𝜌𝑡,𝜆𝑎∥𝐶1,𝛼

−1,𝛿 ;𝑡,𝜆

+ 𝜆∥𝜋𝑡,𝜆𝑎∥𝐶1,𝛼 + 𝜆 |𝜂 | and

∥(𝑎, 𝜂)∥𝔜𝑡,𝜆
:= 𝜆−𝛿/2∥𝜌𝑡,𝜆𝑎∥𝐶0,𝛼

−2,𝛿 ;𝑡,𝜆

+ 𝜆∥𝜋𝑡,𝜆𝑎∥𝐶0,𝛼 + 𝜆 |𝜂 |,

respectively. Here we fixed 𝛿 ∈ (−1, 0) and 0 < 𝛼 ≪ |𝛿 |. For concreteness one may take 𝛿 = − 1

2

and 𝛼 = 1

256
. It will become apparent in the course of this section that the choice of the relative

weights between terms involving 𝜌𝑡,𝜆𝑎 and those involving 𝜋𝑡,𝜆𝑎 is not completely unnatural. We

consider the linear operator L𝑡,𝜆 : 𝔛𝑡,𝜆 → 𝔜𝑡,𝜆 defined by

L𝑡,𝜆 (𝑎, 𝜂) :=
(
𝐿𝑡,𝜆 + 𝜂 · 𝜄𝑡,𝜆𝑣 ◦ ℑ𝑡 ,

〈
𝜋𝑡,𝜆𝑎, 𝑣 ◦ ℑ𝑡

〉)
.

Proposition 8.1. For all 𝑡 ∈ (−𝑇 ′,𝑇 ′) and 𝜆 ∈ (0,Λ] the linear operator L𝑡,𝜆 is invertible, L−1

𝑡,𝜆
depends

continuously differentiably on 𝑡 and continuously on 𝜆 and, moreover, there exists a constant 𝑐 > 0,
which is independent of 𝑡 ∈ (−𝑇 ′,𝑇 ′) and 𝜆 ∈ (0,Λ], such that

∥L−1

𝑡,𝜆
(𝑏, 𝜁 )∥𝔛𝑡,𝜆

⩽ 𝑐 ∥(𝑏, 𝜁 )∥𝔜𝑡,𝜆
and(8.2)

∥∇𝑡L−1

𝑡,𝜆
(𝑏, 𝜁 )∥𝔛𝑡,𝜆

⩽ 𝑐 ∥(𝑏, 𝜁 )∥𝔜𝑡,𝜆
.(8.3)
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The key to this proposition is the following estimate which we will prove in the course of this

section.

Proposition 8.4. There exists a constant 𝑐 > 0, which is independent of 𝑡 ∈ (−𝑇 ′,𝑇 ′) and 𝜆 ∈ (0,Λ],
such that

∥(𝑎, 𝜂)∥𝔛𝑡,𝜆
⩽ 𝑐 ∥L𝑡,𝜆 (𝑎, 𝜂)∥𝔜𝑡,𝜆

.(8.5)

Proposition 8.6. The family of operators L𝑡,𝜆 : 𝔛𝑡,𝜆 → 𝔜𝑡,𝜆 depends continuously differentiably on 𝑡
and continuously on 𝜆 and there exists a constant 𝑐 > 0 such that for all 𝑡 ∈ (−𝑇 ′,𝑇 ′) and 𝜆 ∈ (0,Λ]
we have

∥L𝑡,𝜆 (𝑎, 𝜂)∥𝔜𝑡,𝜆
⩽ 𝑐 ∥(𝑎, 𝜂)∥𝔛𝑡,𝜆

and

∥∇𝑡L𝑡,𝜆 (𝑎, 𝜂)∥𝔜𝑡,𝜆
⩽ 𝑐 ∥(𝑎, 𝜂)∥𝔛𝑡,𝜆

.

Proof of Proposition 8.1. By Proposition 8.4 the operator L𝑡,𝜆 is injective and has closed range.

Hence, we can identify its cokernel with the kernel of L∗
𝑡,𝜆
. Since L𝑡,𝜆 is formally self-adjoint,

it follows from elliptic regularity that the kernel of L∗
𝑡,𝜆

agrees with the kernel of L∗
𝑡,𝜆

and thus

is trivial. Therefore, L𝑡,𝜆 is invertible. Now, (8.2) follows at once from (8.5). Since L𝑡,𝜆 depends

continuously differentiably on 𝑡 and continuously on 𝜆, so does L𝑡,𝜆 . Since ∇𝑡L−1

𝑡,𝜆
= −L−1

𝑡,𝜆
∇𝑡L𝑡,𝜆L−1

𝑡,𝜆
,

(8.3) follows from (8.2) and Proposition 8.6. □

8.1 The model operator on R7

Let 𝐼 be a finite energy ASD instanton on a 𝐺–bundle 𝐸 over R4
. By a slight abuse of notation we

denote the pullbacks of 𝐼 and 𝐸 to R7 = R3 ⊕ R4
by 𝐼 and 𝐸 as well. We define 𝐿𝐼 : Ω0(R7, 𝔤𝐸) ⊕

Ω1(R7, 𝔤𝐸) → Ω0(R7, 𝔤𝐸) ⊕ Ω1(R7, 𝔤𝐸) by(
0 d

∗
𝐼

d𝐼 ∗(𝜓0 ∧ d𝐼 )

)
where

𝜓0 :=
1

2

𝜔1 ∧ 𝜔1 − d𝑥23 ∧ 𝜔1 − d𝑥31 ∧ 𝜔2 − d𝑥12 ∧ 𝜔3 and

𝜔1 := d𝑥45 + d𝑥67, 𝜔2 := d𝑥46 − d𝑥47
and 𝜔3 := d𝑥47 + d𝑥56.

Denote by 𝜋R4 : R3⊕R4 → R4
the projection onto the second summand and define weight functions

𝑤 (𝑥) := 1 + |𝜋R4 (𝑥) | and 𝑤 (𝑥,𝑦) := min{𝑤 (𝑥),𝑤 (𝑦)}.(8.7)
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For a Hölder exponent 𝛼 ∈ (0, 1) and a weight parameter 𝛽 ∈ R we define

[𝑓 ]
𝐶

0,𝛼

𝛽
(𝑈 ) := sup

𝑑 (𝑥,𝑦)⩽𝑤 (𝑥,𝑦)
𝑤 (𝑥,𝑦)𝛼−𝛽 |𝑓 (𝑥) − 𝑓 (𝑦) |

𝑑 (𝑥,𝑦)𝛼 ,

∥ 𝑓 ∥𝐿∞
𝛽
(𝑈 ) := ∥𝑤−𝛽 𝑓 ∥𝐿∞ (𝑈 ) and

∥ 𝑓 ∥
𝐶
𝑘,𝛼

𝛽
(𝑈 ) :=

𝑘∑︁
𝑗=0

∥∇ 𝑗 𝑓 ∥𝐿∞
𝛽− 𝑗

(𝑈 ) + [∇ 𝑗 𝑓 ]
𝐶

0,𝛼

𝛽− 𝑗
(𝑈 ) .

Here 𝑓 is a section of a vector bundle over𝑈 ⊂ R7
equipped with an inner product and a compatible

connection. We use parallel transport to compare the values of 𝑓 at different points. If 𝑈 is not

specified, then we take𝑈 = R7
. We denote by𝐶

𝑘,𝛼

𝛽
the subspace of elements 𝑓 of the Banach space

𝐶𝑘,𝛼
with ∥ 𝑓 ∥

𝐶
𝑘,𝛼

𝛽

< ∞ equipped with the norm ∥ · ∥
𝐶
𝑘,𝛼

𝛽

.

The linear operators 𝐿𝐼 can serve as a model for 𝐿𝑡,𝜆 in the following sense: Fix 𝑡 ∈ (0,𝑇 ′] and
𝑥 ∈ 𝑃𝑡 . Set 𝐼 := 𝐼 (ℑ) |𝑁𝑥𝑃𝑡 and 𝐸 := 𝐸 (ℑ𝑡 ) |𝑁𝑥𝑃𝑡 . Identify 𝑇𝑥𝑌 = 𝑇𝑥𝑃𝑡 ⊕ 𝑁𝑥𝑃𝑡 with R7 = R3 ⊕ R4

in

such a way that the summands are preserved and 𝜓𝑡 |𝑇𝑥𝑌 is identified with 𝜓0. For 𝜀1, 𝜀2 > 0 we

define 𝑉𝜀1,𝜀2;𝑡 to be the open set which under the exponential map based at 𝑥 is identified with

˜𝑈𝜀1,𝜀2
:= 𝐵𝜀1

(0) × 𝐵𝜀2
(0) ⊂ R3 ⊕ R4

. With respect to this identification a 𝔤𝐸𝑡,𝜆–valued tensor field

𝑓 on 𝑉𝜀1,𝜀2;𝑡 is identified with a 𝑠∗
1/𝜆𝔤𝐸–valued tensor field

˜𝑓 on �̃�𝜀1,𝜀2;𝜆 , and if 𝑘 ∈ N is a scaling

parameter, then with 𝑓 we can associate a 𝔤𝐸–valued tensor field 𝑠𝑘,𝜆 𝑓 on 𝑈𝜀1,𝜀2;𝜆 := 𝜆−1 ˜𝑈𝜀1,𝜀2

defined by

(𝑠𝑘,𝜆 𝑓 ) (𝑥,𝑦) := 𝜆𝑘 ˜𝑓 (𝜆𝑥, 𝜆𝑦) .
Proposition 8.8. There is are constants 𝑐, 𝜀0 > 0 such that for 𝜀 ∈ (0, 𝜀0], 𝑡 ∈ (−𝑇 ′,𝑇 ′) and 𝜆 ∈ (0,Λ]
we have

1

𝑐
∥𝑠𝑘,𝜆 𝑓 ∥

𝐿∞
ℓ+𝛿

(
𝑈
𝜀,
√
𝜆;𝜆𝑖

) ⩽ 𝜆𝑘+ℓ ∥ 𝑓 ∥
𝐿∞
ℓ,𝛿 ;𝑡,𝜆

(
𝑉
𝜀,
√
𝜆;𝑡

) ⩽ 𝑐 ∥𝑠𝑘,𝜆 𝑓 ∥
𝐿∞
ℓ+𝛿

(
𝑈
𝜀,
√
𝜆;𝜆𝑖

) ,
1

𝑐
∥𝑠𝑘,𝜆 𝑓 ∥

𝐶
𝑘,𝛼

ℓ+𝛿

(
𝑈
𝜀,
√
𝜆;𝜆𝑖

) ⩽ 𝜆𝑘+ℓ ∥ 𝑓 ∥
𝐶
𝑘,𝛼

ℓ,𝛿 ;𝑡,𝜆

(
𝑉
𝜀,
√
𝜆;𝑡

) ⩽ 𝑐 ∥𝑠𝑘,𝜆 𝑓 ∥
𝐶
𝑘,𝛼

ℓ+𝛿

(
𝑈
𝜀,
√
𝜆;𝜆𝑖

)
and 𝐿𝑡,𝜆𝑎 − 𝑠−1

2,𝜆
𝐿𝐼𝑠1,𝜆𝑎


𝐶

0,𝛼

−2,𝛿 ;𝑡,𝜆

(
𝑉
𝜀,
√
𝜆;𝑡

) ⩽ 𝑐 (𝜀 + √
𝜆)

𝑎
𝐶

1,𝛼

−1,𝛿 ;𝑡,𝜆

(
𝑉
𝜀,
√
𝜆;𝑡

) .
To better understand 𝐿𝐼 it is useful to rewrite it as follows.

Proposition 8.9. If we identify𝑇 ∗R3 withΛ+ via d𝑥𝑖 ↦→ −𝜔𝑖 and accordingly Ω0(R7, 𝔤𝐸)⊕Ω1(R7, 𝔤𝐸)
with Ω0(R7,

(
R ⊕ 𝑇 ∗R3 ⊕ 𝑇 ∗R4

)
⊗𝔤𝐸), then the linear operator 𝐿𝐼 can be written as 𝐿𝐼 = 𝐹 +𝐷𝐼 where

𝐹 (𝜉, 𝜔, 𝑎) :=

3∑︁
𝑖=1

(− ⟨𝜕𝑖𝜔,𝜔𝑖⟩ , 𝜕𝑖𝜉 · 𝜔𝑖 , ∗4(𝜕𝑖𝑎 ∧ 𝜔𝑖)) ,

𝐷𝐼 :=

(
0 𝛿𝐼
𝛿∗
𝐼

0

)
and
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𝛿𝐼 : Ω1(R4, 𝔤𝐸) → Ω0(R4, 𝔤𝐸) ⊕ Ω+(R4, 𝔤𝐸) is as defined in (3.1). Moreover,

𝐿∗𝐼 𝐿𝐼 = ΔR3 +
(
𝛿𝐼𝛿

∗
𝐼

𝛿∗
𝐼
𝛿𝐼

)
.

Proof. This is easy to verify by a straight-forward computation. □

Let us now recall a key result from [Wal13a, Appendix A].

Definition 8.10. A Riemannian manifold 𝑋 is said to be of bounded geometry if it is complete, its

Riemann curvature tensor is bounded from above and its injectivity radius is bounded from below.

A vector bundle over 𝑋 is said to be of bounded geometry if it has trivialisations over balls of a

fixed radius such that the transitions functions and all of their derivatives are uniformly bounded.

We say that a complete oriented Riemannian manifold 𝑋 has subexponential volume growth if for

each 𝑥 ∈ 𝑋 the function 𝑟 ↦→ vol (𝐵𝑟 (𝑥)) grows subexponentially as 𝑟 → ∞.

Lemma 8.11. Let 𝐸 be a vector bundle of bounded geometry over a Riemannian manifold 𝑋 of
bounded geometry with subexponential volume growth and suppose that 𝐷 : 𝐶∞(𝑋, 𝐸) → 𝐶∞(𝑋, 𝐸)
is a uniformly elliptic operator of second order whose coefficients and their first derivatives are
uniformly bounded, that is non-negative, i.e., ⟨𝐷𝑎, 𝑎⟩ ⩾ 0 for all 𝑎 ∈ 𝑊 2,2(𝑋, 𝐸), and formally
self-adjoint. If 𝑎 ∈ 𝐶∞(R𝑛 × 𝑋, 𝐸) satisfies

(ΔR𝑛 + 𝐷)𝑎 = 0

and ∥𝑎∥𝐿∞ is finite, then 𝑎 is constant in the R𝑛–direction, that is 𝑎(𝑥,𝑦) = 𝑎(𝑦). Here, by slight abuse
of notation, we denote the pullback of 𝐸 to R𝑛 × 𝑋 by 𝐸 as well.

Remark 8.12. The statement in [Wal13a, Appendix A] also requires ∥∇𝑎∥𝐿∞ to be finite. This,

however, can be deduced from ∥𝑎∥𝐿∞ < ∞, elliptic estimates and the equation (ΔR𝑛 + 𝐷)𝑎 = 0.

Corollary 8.13. If 𝑎 ∈ Ω0(R7, 𝔤𝐸) ⊕ Ω1(R7, 𝔤𝐸) satisfies 𝐿𝐼 = 0 and ∥𝑎∥𝐿∞ is finite, then 𝑎 is the
pullback of an element in the kernel of 𝛿𝐼 .

Proposition 8.14. For 𝛽 ∈ R there is a constant 𝑐 = 𝑐 (𝐼 ) > 0 depending continuously on 𝐼 such that
the following estimate holds

∥𝑎∥
𝐶

1,𝛼

𝛽

⩽ 𝑐
(
∥𝐿𝐼𝑎∥𝐶0,𝛼

𝛽−1

+ ∥𝑎∥𝐿∞
𝛽

)
.

Proof. This is a standard result. The argument we use goes back to work of Nirenberg–Walker

[NW73, Theorem 3.1].

The desired estimate is local in the sense that is enough to prove estimates of the form

∥𝑎∥
𝐶

1,𝛼

𝛽
(𝑈𝑖 ) ⩽ 𝑐

(
∥𝐿𝐼𝑎∥𝐶0,𝛼

𝛽−1

+ ∥𝑎∥𝐿∞
𝛽

)
with 𝑐 > 0 independent of 𝑖 , where {𝑈𝑖} is a suitable open cover of R3 × 𝑋 .
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Fix 𝑅 > 0 suitably large and set𝑈0 := {(𝑥,𝑦) ∈ R3 × 𝑋 : |𝜋R4 (𝑥) | ⩽ 𝑅}. Then there clearly is a

constant 𝑐 > 0 such that the above estimate holds for𝑈𝑖 = 𝑈0. Pick a sequence (𝑥𝑖 , 𝑦𝑖) ∈ R3 × 𝑋
such that 𝑟𝑖 := |𝜋R4 (𝑦𝑖) | ⩾ 𝑅 and the balls 𝑈𝑖 := 𝐵𝑟𝑖/8(𝑥𝑖 , 𝑦𝑖) cover the complement of 𝑈0. On 𝑈𝑖 ,

we have a Schauder estimate of the form

∥𝑎∥𝐿∞ (𝑈𝑖 ) + 𝑟𝛼𝑖 [𝑎]𝐶0,𝛼 (𝑈𝑖 ) + 𝑟𝑖 ∥∇𝐼𝑎∥𝐿∞ (𝑈𝑖 ) + 𝑟 1+𝛼
𝑖 [∇𝐼𝑎]𝐶0,𝛼 (𝑈𝑖 )

⩽ 𝑐
(
𝑟𝑖 ∥𝐿𝐼𝑎∥𝐿∞ (𝑉𝑖 ) + 𝑟 1+𝛼

𝑖 [𝐿𝐼𝑎]𝐶0,𝛼 (𝑉𝑖 ) + ∥𝑎∥𝐿∞ (𝑉𝑖 )
)

where 𝑉𝑖 = 𝐵𝑟𝑖/4(𝑥𝑖 , 𝑦𝑖) and 𝑎 = (𝜉, 𝑎). By rescaling the balls 𝑉𝑖 to a ball of fixed radius one

can see that the constant 𝑐 > 0 can be chosen to work for all 𝑖 simultaneously. Since on 𝑉𝑖 we

have
1

2
𝑟𝑖 ⩽ 𝑤 ⩽ 2𝑟𝑖 , multiplying the above Schauder estimate by 𝑟

−𝛽
𝑖

yields the desired local

estimate. □

8.2 Schauder estimate

Proposition 8.15. There is a constant 𝑐 > 0 such that for all 𝑡 ∈ (−𝑇 ′,𝑇 ′) and 𝜆 ∈ (0,Λ] the following
estimate holds

(8.16) ∥𝑎∥
𝐶

1,𝛼

−1,𝛿 ;𝑡,𝜆

⩽ 𝑐
(
∥𝐿𝑡,𝜆𝑎∥𝐶0,𝛼

−2,𝛿 ;𝑡,𝜆

+ ∥𝑎∥𝐿∞−1,𝛿 ;𝑡,𝜆

)
.

Proof. It suffices to show that there is a constant 𝑐 > 0 such that for all 𝑡 ∈ (−𝑇 ′,𝑇 ′), 𝜆 ∈ (0,Λ]
and 𝑥 ∈ 𝑌 there exist open sets𝑈 and 𝑉 such that

∥𝑎∥
𝐶

1,𝛼

−1,𝛿 ;𝑡,𝜆
(𝑈 ) ⩽ 𝑐

(
∥𝐿𝑡,𝜆𝑎∥𝐶0,𝛼

−2,𝛿 ;𝑡,𝜆
(𝑉 ) + ∥𝑎∥𝐿∞−1,𝛿 ;𝑡,𝜆

(𝑉 )
)
.

For 𝑥 ∈ 𝑌 with 𝑟𝑡 (𝑥) ⩽
√
𝜆 such an estimate follows from Proposition 8.8 and Proposition 8.14.

For 𝑥 ∈ 𝑌 with 𝑟𝑡 (𝑥) >
√
𝜆 one can take 𝑈 = 𝐵𝑟𝑡 (𝑥 )/8(𝑥) and 𝑉 = 𝐵𝑟𝑡 (𝑥 )/4(𝑥) and argue as in the

proof of Proposition 8.14. □

8.3 Estimate of ∥𝜌𝑡,𝜆𝑎∥𝐿∞−1,𝛿 ;𝑡,𝜆

Proposition 8.17. There is a constant 𝑐 > 0 such that for all 𝑡 ∈ (−𝑇 ′,𝑇 ′) and 𝜆 ∈ (0,Λ] the following
estimate holds

(8.18) ∥𝑎∥𝐿∞−1,𝛿 ;𝑡,𝜆
⩽ 𝑐

(
∥𝐿𝑡,𝜆𝑎∥𝐶0,𝛼

−2,𝛿 ;𝑡,𝜆

+ ∥𝜋𝑡,𝜆𝑎∥𝐿∞−1,𝛿 ;𝑡,𝜆

)
.

Proof. If not, then there exist sequences (𝑡𝑖), (𝜆𝑖) and (𝑎
𝑖
) such that lim𝑖→∞ 𝜆𝑖 = 0,

∥𝑎
𝑖
∥𝐿∞−1,𝛿 ;𝑡𝑖 ,𝜆𝑖

= 1,

lim

𝑖→∞
∥𝐿𝑡𝑖 ,𝜆𝑖𝑎𝑖 ∥𝐶0,𝛼

−2,𝛿 ;𝑡𝑖 ,𝜆𝑖

= 0 and

lim

𝑖→∞
∥𝜋𝑡𝑖 ,𝜆𝑖𝑎𝑖 ∥𝐿∞−1,𝛿 ;𝑡𝑖 ,𝜆𝑖

= 0.(8.19)
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After passing to a subsequence we can assume that (𝑡𝑖) converges to a limit 𝑡 . From Proposition 8.15

it follows that

(8.20) ∥𝑎
𝑖
∥
𝐶

1,𝛼

−1,𝛿 ;𝑡𝑖 ,𝜆𝑖

⩽ 𝑐.

Pick a sequence (𝑥𝑖) of points in 𝑌 such that

𝑤−1,𝛿 ;𝑡𝑖 ,𝜆𝑖 (𝑥𝑖) |𝑎𝑖 | (𝑥𝑖) = 1.

After passing to a subsequence we can assume that one of the following cases occurs. We will

show that each of them leads to a contradiction, thus proving the proposition.

Case 1. The sequence (𝑥𝑖) accumulates away from 𝑃𝑡 : lim𝑖→∞ 𝑟𝑡𝑖 (𝑥𝑖) > 0.

By (8.20) the sequence (𝑎
𝑖
) is uniformly bounded in 𝐶1,𝛼

on each compact subset of 𝑌\𝑃𝑡 . Arzelà–
Ascoli and a diagonal sequence argument thus yield a subsequence of (𝑎

𝑖
) which converges to

a limit 𝑎 on 𝑌\𝑃𝑡 in 𝐶1,𝛼/2

loc
. Since we can also arrange that the corresponding subsequence of

(𝑥𝑖) converges to a limit 𝑥 ∈ 𝑌\𝑃𝑡 for which 𝑟𝑡 (𝑥)1+𝛿 |𝑎 | (𝑥) = 1, it follows that 𝑎 cannot vanish

identically. However, 𝑎 also satisfies

∥𝑟 1+𝛿
𝑡 𝑎∥𝐿∞ ⩽ 1 and(8.21)

𝐿𝐵𝑡 ,𝜙𝑡
𝑎 = 0 on 𝑌\𝑃𝑡 .(8.22)

Since 𝛿 < 2, it follows from (8.21) that 𝑎 satisfies (8.22) on all of 𝑌 in the sense of distribution and

hence is smooth by elliptic regularity. This contradicts the hypothesis that 𝐴0 and hence 𝐵𝑡 is

acyclic, i.e., that 𝐿𝐵𝑡 ,𝜙𝑡
has trivial kernel.

Case 2. The sequence (𝑥𝑖) quickly accumulates near 𝑃𝑡 : lim𝑖→∞ 𝑟𝑡𝑖 (𝑥𝑖)/𝜆𝑖 < ∞.

After passing to a subsequence we can assume that (𝑥𝑖) converges to a point 𝑥 ∈ 𝑃𝑡 . With the

notation of the paragraph preceding Proposition 8.8, set

𝑏
𝑖

:= 𝑠1,𝜆𝑖

(
𝑎
𝑖
|𝑉√

𝜆𝑖 ,
√
𝜆𝑖 ;𝑡

)
.

This sequence satisfies

∥𝑏
𝑖
∥
𝐶

1,𝛼

−1+𝛿

(
𝑈√

𝜆𝑖 ,
√
𝜆𝑖 ;𝜆𝑖

) ⩽ 𝑐 and lim

𝑖→∞
∥𝐿𝐼𝑏𝑖 ∥𝐶0,𝛼

−2+𝛿
= 0,

and if (𝑦𝑖) denotes the sequence of points in𝑈√
𝜆𝑖 ,

√
𝜆𝑖 ;𝜆𝑖

corresponding to the sequence (𝑥𝑖), then

𝑤 (𝑦𝑖)1−𝛿 |𝑏
𝑖
| (𝑦𝑖) ⩾

1

2

.

where 𝑤 = 1 + |𝜋R4 | as in (8.7). Since the sequence of subsets 𝑈√
𝜆𝑖 ,

√
𝜆𝑖 ;𝜆𝑖

⊂ R7
is exhaustive,

Arzelà–Ascoli and a diagonal sequence argument yield a subsequence of (𝑏
𝑖
) which converges to
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a limit 𝑏 on R7
in 𝐶

1,𝛼/2

loc
. By translation we can arrange that the R3

–component of 𝑦𝑖 is zero and

thus |𝑦𝑖 | is bounded. After passing to a further subsequence (𝑦𝑖) converges to a limit 𝑦 ∈ R7
. At

this point we must have𝑤 (𝑦)1−𝛿 |𝑏 | (𝑦) ⩾ 1/2 and thus 𝑏 cannot vanish identically. It follows from

Proposition 8.8 that 𝑏 satisfies

∥𝑤1−𝛿𝑏∥𝐿∞ ⩽ 2 and 𝐿𝐼𝑏 = 0.

Moreover, using (8.19) and arguing as in the proof of Proposition 6.4, making use of the hypothesis

𝛿 < 0, one can show that each restriction of 𝑏 = 0 to a slice {𝑥} × R4
is 𝐿2

–orthogonal to ker𝛿𝐼 .

This, however, contradicts Corollary 8.13.

Case 3. The sequence (𝑥𝑖) slowly accumulates near 𝑃𝑡 : lim𝑖→∞ 𝑟𝑡𝑖 (𝑥𝑖)/𝜆𝑖 = ∞.

In a similar manner as in the previous case we set

𝑏
𝑖

:= 𝑠1,𝜆𝑖

(
𝑎
𝑖
|𝑉√

𝜆𝑖 ,𝜎 ;𝑡

)
and denote by (𝑦𝑖) the sequence of points in𝑈√

𝜆𝑖 ,𝜎 ;𝜆𝑖
. Again, we can assume that theR3

–component

of 𝑦𝑖 is zero. After passing to a subsequence we can assume that one of the following two cases

occurs.

Case 3.1. We have |𝑦𝑖 | ⩽ 1/
√
𝜆𝑖 for all 𝑖 ∈ N.

Set

˜𝑏
𝑖

:= |𝑦𝑖 |1−𝛿𝑏𝑖 ( |𝑦𝑖 | · −) and 𝑦𝑖 := 𝑦𝑖/|𝑦𝑖 |.

Again, Arzelà–Ascoli and a diagonal sequence argument yield a subsequence of ( ˜𝑏
𝑖
) converging

to a limit
˜𝑏 on R7\(R3 × {0}) which cannot vanish identically, since |𝑦 |1−𝛿 |�̃� | (𝑦) ⩾ 1/4 with

𝑦 := lim𝑡→∞𝑦𝑖 . However, ˜𝑏 also satisfies

∥�̃�1−𝛿 ˜𝑏∥𝐿∞ ⩽ 4 and(8.23)

𝐿 ˜𝑏 = 0 on R7\(R3 × {0}).(8.24)

Here �̃� := |𝜋R4 | and 𝐿 is defined by

(8.25) 𝐿𝑎 := (d∗𝑎, d𝜉 + ∗(𝜓 ∧ d𝑎)) .

Since 𝛿 > −2, it follows from (8.23) that
˜𝑏 solves (8.24) on all of R7

in the sense of distributions

and hence is smooth by elliptic regularity. Moreover, using standard elliptic estimates one can

show that
˜𝑏 is uniformly bounded near R3

and therefore by (8.23) on all of R7
since 𝛿 ⩽ 1. Because

𝐿∗𝐿 = ΔR3 + ΔR4 , we can now apply Lemma 8.11 to conclude that
˜𝑏 is invariant under translations

in the R4
–direction. We can thus think of

˜𝑏 as a vector of harmonic functions on R4
. Since 𝛿 < 1

it follows that the components of
˜𝑏 decay to zero at infinity and thus vanish by the maximum

principle. This, however, contradicts the fact that
˜𝑏 cannot vanish identically.
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Case 3.2. We have |𝑦𝑖 | > 1/
√
𝜆𝑖 for all 𝑖 ∈ N.

If we set

˜𝑏
𝑖

:= 𝜆𝛿𝑖 |𝑦𝑖 |1+𝛿𝑏𝑖 ( |𝑦𝑖 | · −) and 𝑦𝑖 := 𝑦𝑖/|𝑦𝑖 |,
then we obtain the desired contradiction by arguing, mutatis mutandis, as the previous case. The

relevant constraint on 𝛿 is easily seen to be that 𝛿 ∈ (−1, 2). □

8.4 Comparison with 𝐹ℑ𝑡

The connection on

∐
𝑡 ∈ (−𝑇,𝑇 ) 𝑁𝑃𝑡 induces connections on the bundles over (−𝑇,𝑇 ) whose fibres

are 𝐶0,𝛼 (ℑ∗
𝑡,𝜆
𝑉𝔐𝑡 ) and 𝐶1,𝛼 (ℑ∗

𝑡,𝜆
𝑉𝔐𝑡 ), respectively. We denote the corresponding covariant

derivatives by ∇𝑡 .

Proposition 8.26. There is a constant 𝑐 > 0 such that for all 𝑡 ∈ (−𝑇 ′,𝑇 ′) and 𝜆 ∈ (0,Λ] the following
estimate holds

∥𝐿𝑡,𝜆𝜄𝑡,𝜆 ˆℑ − 𝜄𝑡,𝜆𝐹ℑ𝑡
ˆℑ∥

𝐶
0,𝛼

−2,0;𝑡,𝜆

⩽ 𝑐𝜆2∥ ˆℑ∥𝐶1,𝛼 and

∥(∇𝑡𝐿𝑡,𝜆)𝜄𝑡,𝜆 ˆℑ − 𝜄𝑡,𝜆 (∇𝑡𝐹ℑ𝑡
) ˆℑ∥

𝐶
0,𝛼

−2,0;𝑡,𝜆

⩽ 𝑐𝜆2∥ ˆℑ∥𝐶1,𝛼 .

Proof. Consider the operator

˜𝐿𝑡 : Ω0(𝑁𝑃𝑡 , 𝔤𝐸𝑡 ) ⊕ Ω1(𝑁𝑃𝑡 , 𝔤𝐸𝑡 ) → Ω0(𝑁𝑃𝑡 , 𝔤𝐸𝑡 ) ⊕ Ω1(𝑁𝑃𝑡 , 𝔤𝐸𝑡 )

defined by

˜𝐿𝑡,𝜆𝑎 := (d∗𝐼𝑡,𝜆𝑎, d𝐼𝑡,𝜆𝜉 + ∗0(𝜓0;𝑡 ∧ d𝐼𝑡,𝜆𝑎)) .

If we identify
ˆℑ ∈ Γ(ℑ∗

𝑡𝑉𝔐𝑡 ) with an element of Ω1(𝑁𝑃𝑡 , 𝔤𝐸𝑡 ), then since 𝛿ℑ𝑡 (𝑥 ) ( ˆℑ|𝑁𝑥𝑃𝑡 ) = 0 we

have

�̃�𝑡,𝜆
ˆℑ =

(
0, ∗0

[
𝜓0;𝑡 ∧ (d𝐼𝑡,𝜆 ˆℑ)1,1

] )
which is the same as 𝑠∗

1/𝜆 ◦ 𝐹ℑ𝑡
◦ 𝑠∗

𝜆
( ˆℑ).

In order to prove the first estimate it thus suffices to control the following terms

𝐿𝑡,𝜆𝜄𝑡,𝜆
ˆℑ − 𝜄𝑡,𝜆𝐹ℑ𝑡

ˆℑ = 𝐿𝑡,𝜆 (𝜄𝑡,𝜆 ˆℑ − ˆℑ𝜆) + (𝐿𝑡,𝜆 − �̃�𝑡,𝜆) ˆℑ𝜆

+ (𝑠∗
1/𝜆 ◦ 𝐹ℑ𝑡

ˆℑ − 𝜄𝑡,𝜆𝐹ℑ𝑡
ˆℑ)

=: I + II + III

on 𝑉[0,𝜎 ) ;𝑡 . It is easy to see that

∥I∥
𝐶

0,𝛼

−2,0;𝑡,𝜆
(𝑉[0,𝜎 ) ;𝑡 ) + ∥III∥

𝐶
0,𝛼

−2,0;𝑡,𝜆
(𝑉[0,𝜎 ) ;𝑡 ) ⩽ 𝑐𝜆

2∥ ˆℑ∥𝐶1,𝛼

by using that fact that I and III are supported in 𝑉[𝜎/2,𝜎 ) ;𝑡 and the estimates

∥𝐿𝑡,𝜆𝑎∥𝐶0,𝛼

−2,0;𝑡,𝜆
(𝑉[0,𝜎 ) ;𝑡 ) ⩽ 𝑐 ∥𝑎∥𝐶1,𝛼

−1,0;𝑡,𝜆
(𝑉[0,𝜎 ) ;𝑡 ) and ∥𝐹ℑ𝑡

ˆℑ∥𝐶0,𝛼 ⩽ 𝑐 ∥ ˆℑ∥𝐶1,𝛼 .
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as well as

∥𝜄𝑡,𝜆 ˆℑ − ˆℑ𝜆 ∥𝐶𝑘,𝛼

−ℓ,0;𝑡,𝜆
(𝑉[𝜎/2,𝜎 ) ;𝑡 )

⩽ ∥𝜒+𝑡 − 1∥
𝐶
𝑘,𝛼

ℓ+3,0;𝑡,𝜆
(𝑉[𝜎/2,𝜎 ) ;𝑡 ) · ∥

ˆℑ𝜆 ∥𝐶𝑘,𝛼

−3,0;𝑡,𝜆
(𝑉[𝜎/2,𝜎 ) ;𝑡 )

⩽ 𝑐𝜆2∥ ˆℑ∥𝐶𝑘,𝛼 .

To estimate II we expand it as

II = ∗
(
𝜓𝑡 ∧ (𝐴𝑡,𝜆 − 𝐼𝑡,𝜆) ∧ ˆℑ𝜆

)
+ ∗

(
(𝜓1;𝑡 +𝜓⩾2;𝑡 ) ∧ d𝐼𝑡,𝜆

ˆℑ𝜆

)
+ (∗ − ∗0) (𝜓0;𝑡 ∧ d𝐼𝑡,𝜆

ˆℑ𝜆)
=: II1 + II2 + II3.

It follows from Proposition 7.6 that

(8.27) ∥𝐴𝑡,𝜆 − 𝐼𝑡,𝜆 ∥𝐶0,𝛼

1,0;𝑡,𝜆
(𝑉[0,𝜎 ) ;𝑡 ) = ∥𝜒−

𝑡,𝜆
𝑏𝑡 + (𝜒+𝑡 − 1)𝑖𝑡,𝜆 ∥𝐶0,𝛼

1,0;𝑡,𝜆
(𝑉[0,𝜎 ) ;𝑡 ) ⩽ 𝑐

which in conjunction with (7.7) yields

∥II1∥𝐶0,𝛼

−2,0;𝑡,𝜆

⩽ 𝑐𝜆2∥ ˆℑ∥𝐶1,𝛼 .

From Proposition 3.2 and simple scaling considerations it follows that

∥(d𝐼𝑡,𝜆 ˆℑ𝜆)1,1∥
𝐶

0,𝛼

−3,0;𝑡,𝜆
(𝑉[0,𝜎 ) ;𝑡 ) + ∥(d𝐼𝑡,𝜆 ˆℑ𝜆)0,2∥

𝐶
0,𝛼

−4,0;𝑡,𝜆
(𝑉[0,𝜎 ) ;𝑡 ) ⩽ 𝑐𝜆

2∥ ˆℑ∥𝐶1,𝛼 .

Since 𝛿ℑ𝑡 (𝑥 ) ( ˆℑ|𝑁𝑥𝑃𝑡 ) = 0, we have

𝜓0;𝑡 ∧ (d𝐼𝑡,𝜆 ˆℑ𝜆)0,2 = 𝜓1;𝑡 ∧ (d𝐼𝑡,𝜆 ˆℑ𝜆)0,2 = 0.

These facts together with Proposition 7.2 imply that

∥II2∥𝐶0,𝛼

−2,0;𝑡,𝜆

+ ∥II3∥𝐶0,𝛼

−2,0;𝑡,𝜆

⩽ 𝑐𝜆2∥ ˆℑ∥𝐶1,𝛼 .

This finishes the proof of the first estimate. To prove the second estimate note that the individual

terms of

(∇𝑡𝐿𝑡,𝜆𝜄𝑡,𝜆) ˆℑ − ∇𝑡𝐹ℑ𝑡
ˆℑ = (∇𝑡𝐿𝑡,𝜆) (𝜄𝑡,𝜆 ˆℑ − ˆℑ𝜆) + ∇𝑡 (𝐿𝑡,𝜆 − �̃�𝑡,𝜆) ˆℑ𝜆

+ (𝑠∗
1/𝜆 ◦ ∇𝑡𝐹ℑ𝑡

ˆℑ − 𝜄𝑡,𝜆∇𝑡𝐹ℑ𝑡
ˆℑ)

can be estimated just as above. □

Proposition 8.28. There is a constant 𝑐 > 0 such that for all 𝑡 ∈ (−𝑇 ′,𝑇 ′) and 𝜆 ∈ (0,Λ] we have

∥ ˆℑ∥𝐶1,𝛼 ⩽ 𝑐
(
∥𝜋𝑡,𝜆𝐿𝑡,𝜆𝜄𝑡,𝜆 ˆℑ∥𝐶0,𝛼 +

���⟨ ˆℑ, 𝑣 ◦ ℑ𝑡 ⟩
���) .
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Proof. By hypothesis we have

∥ ˆℑ∥𝐶1,𝛼 ⩽ 𝑐
(
∥𝐹ℑ𝑡

ˆℑ∥𝐶0,𝛼 +
���⟨ ˆℑ, 𝑣 ◦ ℑ𝑡 ⟩

���)
for 𝑡 = 0 and thus also for 𝑡 ∈ (−𝑇 ′,𝑇 ′). Together with

∥𝐹ℑ𝑡
ˆℑ∥𝐶0,𝛼 ⩽ 𝑐

(
∥𝜋𝑡,𝜆𝐿𝑡,𝜆𝜄𝑡,𝜆 ˆℑ∥𝐶0,𝛼 + 𝜆1−𝛼 ∥ ˆℑ∥𝐶1,𝛼

)
,

which is an immediate corollary of Proposition 6.4 and Proposition 8.26, this immediately implies

the asserted estimate by rearranging. □

8.5 Cross-term estimates

Proposition 8.29. There is a constant 𝑐 > 0 such that for all 𝑡 ∈ (−𝑇 ′,𝑇 ′) and 𝜆 ∈ (0,Λ] we have

∥𝜌𝑡,𝜆𝐿𝑡,𝜆𝜄𝑡,𝜆 ˆℑ∥
𝐶

0,𝛼

−2,0;𝑡,𝜆

⩽ 𝑐𝜆2−𝛼 ∥ ˆℑ∥𝐶1,𝛼 and

∥𝜌𝑡,𝜆 (∇𝑡𝐿𝑡,𝜆)𝜄𝑡,𝜆 ˆℑ∥
𝐶

0,𝛼

−2,0;𝑡,𝜆

⩽ 𝑐𝜆2−𝛼 ∥ ˆℑ∥𝐶1,𝛼

as well as

∥𝜋𝑡,𝜆𝐿𝑡,𝜆𝜌𝑡,𝜆𝑎∥𝐶0,𝛼 ⩽ 𝑐𝜆−𝛼 ∥𝜌𝑡,𝜆𝑎∥𝐶1,𝛼

−1,0;𝑡,𝜆

and

∥𝜋𝑡,𝜆 (∇𝑡𝐿𝑡,𝜆)𝜌𝑡,𝜆𝑎∥𝐶0,𝛼 ⩽ 𝑐𝜆−𝛼 ∥𝜌𝑡,𝜆𝑎∥𝐶1,𝛼

−1,0;𝑡,𝜆

.

Proof. The first two estimates are immediate consequences of Proposition 6.4 and Proposition 8.26

because

𝜌𝑡,𝜆𝐿𝑡,𝜆𝜄𝑡,𝜆
ˆℑ = 𝜌𝑡,𝜆 (𝐿𝑡,𝜆𝜄𝑡,𝜆 ˆℑ − 𝜄𝑡,𝜆𝐹ℑ𝑡

ˆℑ)

and similarly for ∇𝑡𝐿𝑡,𝜆 .

To prove the last two estimates first note that we can assume without loss of generality that 𝑎

is supported in 𝑉[0,𝜎 ) and that 𝑎 = 𝜌𝑡,𝜆𝑎. Define �̃�𝑡,𝜆 : Ω1(𝑁𝑃𝑡 , 𝔤𝐸𝑡 ) → Γ(ℑ∗
𝑡𝑉𝔐𝑡 ) by

(�̃�𝑡,𝜆𝑎) (𝑥) :=
∑︁
𝜅

ˆ
𝑁𝑥𝑃𝑡

〈
𝑎, 𝑠∗

1/𝜆𝜅
〉
𝑠∗

1/𝜆𝜅

where, at each point 𝑥 ∈ 𝑃𝑡 , 𝜅 runs through an orthonormal basis of (𝑉𝔐𝑡 )ℑ𝑡 (𝑥 ) with respect to〈
𝑠∗

1/𝜆 ·, 𝑠
∗
1/𝜆 ·

〉
and set 𝜌𝑡,𝜆 := id − �̃�𝑡,𝜆 . One can check �̃�𝑡,𝜆𝑎 = 0 implies that �̃�𝑡,𝜆 ˜𝐿𝑡,𝜆𝑎 = 0 where

˜𝐿𝑡,𝜆

is as defined in the proof of Proposition 8.26. Therefore

𝜋𝑡,𝜆𝐿𝑡,𝜆𝜌𝑡,𝜆𝑎 = 𝜋𝑡,𝜆 (𝐿𝑡,𝜆 − ˜𝐿𝑡,𝜆)𝜌𝑡,𝜆𝑎 + (𝜋𝑡,𝜆 − �̃�𝑡,𝜆) ˜𝐿𝑡,𝜆𝜌𝑡,𝜆𝑎

+ �̃�𝑡,𝜆 ˜𝐿𝑡,𝜆 (𝜌𝑡,𝜆 − 𝜌𝑡,𝜆)𝑎
=: 𝜋𝑡,𝜆I + II + III.
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Define
˜�̃�𝑡,𝜆 like �̃�𝑡,𝜆 but take the inner product with 𝜄𝑡,𝜆𝜅 instead of 𝑠∗

1/𝜆𝜅 and let 𝜅 run through

an orthonormal basis with respect to

〈
𝜄𝑡,𝜆 ·, 𝜄𝑡,𝜆 ·

〉
𝐿2
. If ĨI and ˜III denote the same expressions as II

and III but with
˜�̃�𝑡,𝜆 in place of �̃�𝑡,𝜆 and id − ˜�̃�𝑡,𝜆 in place of 𝜌𝑡,𝜆 , then ĨI and ˜III are supported in

𝑉[𝜎/2,𝜎 ) and one can argue as in the proof of Proposition 8.26 to show

∥ ĨI∥𝐶0,𝛼 + ∥ ˜III∥𝐶0,𝛼 ⩽ 𝑐𝜆−𝛼 ∥𝑎∥
𝐶

0,𝛼

−1,𝛿 ;𝑡,𝜆

.

The eigenvalues of the quadratic form

〈
𝜄𝑡,𝜆 ·, 𝜄𝑡,𝜆 ·

〉
with respect to

〈
𝑠∗

1/𝜆 ·, 𝑠
∗
1/𝜆 ·

〉
differ from one by

𝑂 (𝜆4); hence, the differences between II and ĨI as well as between III and ˜III are negligibly small.

To estimate I we write it as

I = ∗
(
𝜓𝑡 ∧ (𝐴𝑡,𝜆 − 𝐼𝑡,𝜆) ∧ 𝜌𝑡,𝜆𝑎

)
+ ∗

(
(𝜓1;𝑡 +𝜓⩾2;𝑡 ) ∧ d𝐼𝑡,𝜆𝜌𝑡,𝜆𝑎

)
+ (∗ − ∗0)

(
𝜓0 ∧ d𝐼𝑡,𝜆𝜌𝑡,𝜆𝑎

)
.

Using Proposition 6.4, Proposition 7.2 and Proposition 7.3 as well as and (8.27) it follows that

∥𝜋𝑡,𝜆I∥𝐶0,𝛼 ⩽ 𝑐𝜆−𝛼 ∥I∥
𝐶

0,𝛼

−1,0;𝑡,𝜆
(𝑉[0,𝜎 ) ;𝑡 ) ⩽ 𝑐𝜆

−𝛼 ∥𝑎∥
𝐶

1,𝛼

−1,𝛿 ;𝑡,𝜆

.

This finishes the proof of the third estimate. The last estimate is proved along the same lines. □

8.6 Proof of Proposition 8.4

Applying Proposition 8.15 and Proposition 8.17 to 𝜌𝑡,𝜆𝑎 and using Proposition 6.4 yields

∥𝜌𝑡,𝜆𝑎∥𝐶1,𝛼

−1,𝛿 ;𝑡,𝜆

⩽ 𝑐 ∥𝐿𝑡,𝜆𝜌𝑡,𝜆𝑎∥𝐶0,𝛼

−2,𝛿 ;𝑡,𝜆

⩽ 𝑐
(
∥𝜌𝑡,𝜆𝐿𝑡,𝜆𝑎∥𝐶0,𝛼

−2,𝛿 ;𝑡,𝜆

+ ∥𝜌𝑡,𝜆𝐿𝑡,𝜆𝜋𝑡,𝜆𝑎∥𝐶0,𝛼

−2,𝛿 ;𝑡,𝜆

+ 𝜆1−𝛼 ∥𝜋𝑡,𝜆𝐿𝑡,𝜆𝜌𝑡,𝜆𝑎∥𝐶0,𝛼

)
.

By Proposition 8.28

∥𝜋𝑡,𝜆𝑎∥𝐶1,𝛼 ⩽ 𝑐
(
∥𝜋𝑡,𝜆𝐿𝑡,𝜆𝑎∥𝐶0,𝛼 +

��〈𝜋𝑡,𝜆𝑎, 𝑣 ◦ ℑ𝑡

〉�� + ∥𝜋𝑡,𝜆𝐿𝑡,𝜆𝜌𝑡,𝜆𝑎∥𝐶0,𝛼

)
.

Recalling the definitions of ∥ · ∥𝔛𝑡,𝜆
, ∥ · ∥𝔜𝑡,𝜆

and L𝑡,𝜆 , and using Proposition 8.29 it follows that

∥(𝑎, 𝜂)∥𝔛𝑡,𝜆
⩽ 𝑐

(
∥L𝑡,𝜆 (𝑎, 𝜂)∥𝔜𝑡,𝜆

+ 𝜆1−𝛼 ∥(𝑎, 𝜂)∥𝔛𝑡,𝜆

)
which yields (8.5) by rearranging. □
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8.7 Proof of Proposition 8.6

It is clear that 𝐿𝑡,𝜆 depends continuously differentiably on 𝑡 and continuously on 𝜆. By Proposi-

tion 8.26 and Proposition 8.29 as well as Corollary 6.3 and Proposition 6.4 we have

∥𝜌𝑡,𝜆𝐿𝑡,𝜆𝑎∥𝐶0,𝛼

−2,𝛿 ;𝑡,𝜆

⩽ 𝑐
(
∥𝐿𝑡,𝜆𝜌𝑡,𝜆𝑎∥𝐶0,𝛼

−2,𝛿 ;𝑡,𝜆

+ 𝜆1−𝛼 ∥𝜋𝑡,𝜆𝐿𝑡,𝜆𝜌𝑡,𝜆𝑎∥𝐶0,𝛼

+∥𝜌𝑡,𝜆𝐿𝑡,𝜆𝜋𝑡,𝜆𝑎∥𝐶0,𝛼

−2,𝛿 ;𝑡,𝜆

)
⩽ 𝑐

(
∥𝜌𝑡,𝜆𝑎∥𝐶1,𝛼

−1,𝛿 ;𝑡,𝜆

+ 𝜆2+𝛿/2−𝛼 ∥𝜋𝑡,𝜆𝑎∥𝐶1,𝛼

)
and

∥𝜋𝑡,𝜆𝐿𝑡,𝜆𝑎∥𝐶0,𝛼 ⩽ ∥𝐹ℑ𝑡
𝜋𝑡,𝜆𝑎∥𝐶0,𝛼 + ∥𝜋𝑡,𝜆𝐿𝑡,𝜆𝜌𝑡,𝜆𝑎∥𝐶0,𝛼

+ 𝑐𝜆1−𝛼 ∥𝜋𝑡,𝜆𝑎∥𝐶0,𝛼

⩽ 𝑐
(
∥𝜋𝑡,𝜆𝑎∥𝐶1,𝛼 + 𝜆−𝛼 ∥𝜌𝑡,𝜆𝑎∥𝐶1,𝛼

−1,𝛿 ;𝑡,𝜆

)
.

This yields ∥L𝑡,𝜆𝑎∥𝔜𝑡,𝜆
⩽ 𝑐 ∥𝑎∥𝔛𝑡,𝜆

. In a similar way one shows that

∥∇𝑡L𝑡,𝜆𝑎∥𝔜𝑡,𝜆
⩽ 𝑐 ∥𝑎∥𝔛𝑡,𝜆

.

This completes the proof. □

9 Quadratic estimate

By a slight abuse of notation we denote by 𝑄𝑡,𝜆 the quadratic form defined in (5.7) as well as the

associated bilinear form.

Proposition 9.1. The bilinear form𝑄𝑡,𝜆 depends continuously differentiably on 𝑡 and continuously on
𝜆 and there exists a constant 𝑐 > 0 such that for 𝑡 ∈ (−𝑇 ′,𝑇 ′) and 𝜆 ∈ (0,Λ] we have

∥𝜌𝑡,𝜆𝑄𝑡,𝜆 (𝑎1
, 𝑎

2
)∥

𝐶
0,𝛼

−2,𝛿 ;𝑡,𝜆

⩽ 𝑐𝜆−𝛼
(
∥𝜌𝑡,𝜆𝑎1

∥
𝐶

0,𝛼

−1,𝛿 ;𝑡,𝜆

· ∥𝜌𝑡,𝜆𝑎2
∥
𝐶

0,𝛼

−1,𝛿 ;𝑡,𝜆

+ ∥𝜌𝑡,𝜆𝑎1
∥
𝐶

0,𝛼

−1,𝛿 ;𝑡,𝜆

· ∥𝜋𝑡,𝜆𝑎2
∥𝐶0,𝛼

+∥𝜋𝑡,𝜆𝑎1
∥𝐶0,𝛼 · ∥𝜌𝑡,𝜆𝑎2

∥
𝐶

0,𝛼

−1,𝛿 ;𝑡,𝜆

+ ∥𝜋𝑡,𝜆𝑎1
∥𝐶0,𝛼 · ∥𝜋𝑡,𝜆𝑎2

∥𝐶0,𝛼

)
and

∥𝜌𝑡,𝜆∇𝑡𝑄𝑡,𝜆 (𝑎1
, 𝑎

2
)∥

𝐶
0,𝛼

−2,𝛿 ;𝑡,𝜆

⩽ 𝑐𝜆−𝛼
(
∥𝜌𝑡,𝜆𝑎1

∥
𝐶

0,𝛼

−1,𝛿 ;𝑡,𝜆

· ∥𝜌𝑡,𝜆𝑎2
∥
𝐶

0,𝛼

−1,𝛿 ;𝑡,𝜆

+ ∥𝜌𝑡,𝜆𝑎1
∥
𝐶

0,𝛼

−1,𝛿 ;𝑡,𝜆

· ∥𝜋𝑡,𝜆𝑎2
∥𝐶0,𝛼

+∥𝜋𝑡,𝜆𝑎1
∥𝐶0,𝛼 · ∥𝜌𝑡,𝜆𝑎2

∥
𝐶

0,𝛼

−1,𝛿 ;𝑡,𝜆

+ ∥𝜋𝑡,𝜆𝑎1
∥𝐶0,𝛼 · ∥𝜋𝑡,𝜆𝑎2

∥𝐶0,𝛼

)
32



as well as

𝜆∥𝜋𝑡,𝜆𝑄𝑡,𝜆 (𝑎1
, 𝑎

2
)∥𝐶0,𝛼

⩽ 𝑐𝜆−𝛼
(
∥𝜌𝑡,𝜆𝑎1

∥
𝐶

0,𝛼

−1,𝛿 ;𝑡,𝜆

· ∥𝜌𝑡,𝜆𝑎2
∥
𝐶

0,𝛼

−1,𝛿 ;𝑡,𝜆

+ ∥𝜌𝑡,𝜆𝑎1
∥
𝐶

0,𝛼

−1,𝛿 ;𝑡,𝜆

· ∥𝜋𝑡,𝜆𝑎2
∥𝐶0,𝛼

+∥𝜋𝑡,𝜆𝑎1
∥𝐶0,𝛼 · ∥𝜌𝑡,𝜆𝑎2

∥
𝐶

0,𝛼

−1,𝛿 ;𝑡,𝜆

+ 𝜆∥𝜋𝑡,𝜆𝑎1
∥𝐶0,𝛼 · ∥𝜋𝑡,𝜆𝑎2

∥𝐶0,𝛼

)
and

𝜆∥𝜋𝑡,𝜆∇𝑡𝑄𝑡,𝜆 (𝑎1
, 𝑎

2
)∥𝐶0,𝛼

⩽ 𝑐𝜆−𝛼
(
∥𝜌𝑡,𝜆𝑎1

∥
𝐶

0,𝛼

−1,𝛿 ;𝑡,𝜆

· ∥𝜌𝑡,𝜆𝑎2
∥
𝐶

0,𝛼

−1,𝛿 ;𝑡,𝜆

+ ∥𝜌𝑡,𝜆𝑎1
∥
𝐶

0,𝛼

−1,𝛿 ;𝑡,𝜆

· ∥𝜋𝑡,𝜆𝑎2
∥𝐶0,𝛼

+∥𝜋𝑡,𝜆𝑎1
∥𝐶0,𝛼 · ∥𝜌𝑡,𝜆𝑎2

∥
𝐶

0,𝛼

−1,𝛿 ;𝑡,𝜆

+ 𝜆∥𝜋𝑡,𝜆𝑎1
∥𝐶0,𝛼 · ∥𝜋𝑡,𝜆𝑎2

∥𝐶0,𝛼

)
.

Proof. The first two estimates are immediate consequences of Proposition 6.2 and Proposition 6.4.

For the last two estimates we only have to explain why we get a factor 𝜆 (instead of one) in front

of ∥𝜋𝑡,𝜆𝑎1
∥𝐶0,𝛼 · ∥𝜋𝑡,𝜆𝑎2

∥𝐶0,𝛼 . Note that[
∗0

(
𝜄𝑡,𝜆

ˆℑ1 ∧ 𝜄𝑡,𝜆 ˆℑ2 ∧𝜓0;𝑡

)]
0,1

= 0

on grounds of simple bi-degree considerations. Therefore, using Proposition 6.4, Proposition 7.2

and Proposition 7.3,

∥𝜋𝑡,𝜆𝑄𝑡,𝜆 (𝜄𝑡,𝜆 ˆℑ1, 𝜄𝑡,𝜆
ˆℑ2)∥𝐶0,𝛼

⩽ 𝑐𝜆−𝛼
(
∥(∗ − ∗0) (𝜄𝑡,𝜆 ˆℑ1 ∧ 𝜄𝑡,𝜆 ˆℑ2 ∧𝜓 )∥𝐶0,𝛼

−1,𝛿 ;𝑡,𝜆

+ ∥ ∗0 [𝜄𝑡,𝜆 ˆℑ1 ∧ 𝜄𝑡,𝜆 ˆℑ2 ∧ (𝜓1;𝑡 +𝜓⩾2;𝑡 )] ∥𝐶0,𝛼

−1,𝛿 ;𝑡,𝜆

)
⩽ 𝑐𝜆−𝛼 ∥ ˆℑ1∥𝐶0,𝛼 · ∥ ˆℑ2∥𝐶0,𝛼 . □

10 Conclusion of the proof of Theorem 1.2

Proposition 10.1. There is a constant 𝑐 > 0 and for 𝑡 ∈ (−𝑇 ′,𝑇 ′) and 𝜆 ∈ (0,Λ] there are
𝑎(𝑡, 𝜆) ∈ 𝐶1,𝛼

(
𝑌, (Λ0 ⊕ Λ1) ⊗ 𝔤𝐸𝑡,𝜆

)
and 𝜂 (𝑡, 𝜆) ∈ R depending continuously differentiably on 𝑡

and continuously on 𝜆 such that the connection ˜𝐴𝑡,𝜆 := 𝐴𝑡,𝜆 + 𝑎(𝑡, 𝜆) satisfies

(10.2) ∗
(
𝐹 ˜𝐴𝑡,𝜆

∧𝜓𝑡
)
+ d�̃�𝑡,𝜆

𝜉 (𝑡, 𝜆) + (𝜇 (𝑡) + 𝜂 (𝑡, 𝜆)) · 𝜄𝑡,𝜆𝑣 ◦ ℑ𝑡 = 0

and

∥𝑎(𝑡, 𝜆)∥𝔛𝑡,𝜆
⩽ 𝑐𝜆2−𝛼 and |𝜂 (𝑡, 𝜆) | + |𝜕𝑡𝜂 (𝑡, 𝜆) | ⩽ 𝑐𝜆1−𝛼 .
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The proof relies on the preceding analysis and the following simple consequence of Banach’s

fixed point theorem, cf. [DK90, Lemma 7.2.23].

Lemma 10.3. Let 𝑋 be a Banach space and let 𝑇 : 𝑋 → 𝑋 be a smooth map with 𝑇 (0) = 0. Suppose
there is a constant 𝑐 > 0 such that

∥𝑇𝑥 −𝑇𝑦∥ ⩽ 𝑐 (∥𝑥 ∥ + ∥𝑦∥) ∥𝑥 − 𝑦∥ .

Then if 𝑦 ∈ 𝑋 satisfies ∥𝑦∥ ⩽ 1

10𝑐
, there exists a unique 𝑥 ∈ 𝑋 with ∥𝑥 ∥ ⩽ 1

5𝑐
solving

𝑥 +𝑇𝑥 = 𝑦.

The unique solution satisfies ∥𝑥 ∥ ⩽ 2∥𝑦∥. Moreover, if 𝑇 and 𝑦 depend continuously or continuously
differentiably on a parameter in an open subset of R𝑛 , then so does the solution 𝑥 .

Proof of Proposition 10.1. We solve (10.2) with the additional constraints

d
∗
𝐴𝑡,𝜆

𝑎 = 0 and

〈
𝜋𝑡,𝜆𝑎, 𝑣 ◦ ℑ𝑡

〉
= 0.

This can be written as

L𝑡,𝜆 (𝑎, 𝜂) +𝑄𝑡,𝜆 (𝑎) + 𝑒𝑡,𝜆 = 0.

With (𝑎, 𝜂) = L−1

𝑡,𝜆
(𝑏, 𝜁 ) this becomes

(10.4) (𝑏, 𝜁 ) + ˜𝑄𝑡,𝜆 (𝑏, 𝜁 ) + 𝑒𝑡,𝜆 = 0.

where
˜𝑄𝑡,𝜆 := 𝑄𝑡,𝜆 ◦ L−1

𝑡,𝜆
. It follows from Proposition 8.1 and Proposition 9.1 that

∥�̃�𝑡,𝜆 (𝑏1
, 𝜁1) − �̃�𝑡,𝜆 (𝑏2

, 𝜁2)∥𝔜𝑡,𝜆

⩽ 𝑐𝜆−2−𝛿/2−𝛼 (
∥(𝑏

1
, 𝜁1)∥𝔜𝑡,𝜆

+ ∥(𝑏
2
, 𝜁2)∥𝔜𝑡,𝜆

)
∥(𝑏

1
, 𝜁1) − (𝑏

2
, 𝜁2)∥𝔜𝑡,𝜆

.

and we recall from Proposition 7.1 that

∥𝑒𝑡,𝜆 ∥𝔜𝑡,𝜆
⩽ 𝑐𝜆2−𝛼 .

Hence, we can solve (10.4) using Lemma 10.3 since 𝛿 ∈ (−1, 0) and 0 < 𝛼 ≪ |𝛿 |. The solution
satisfies ∥(𝑏, 𝜁 )∥𝔜𝑡,𝜆

⩽ 𝑐𝜆2−𝛼
and (∇𝑡𝑏, 𝜕𝑡𝜁 ) solves the equation

(10.5) (∇𝑡𝑏, 𝜕𝑡𝜁 ) + 2
˜𝑄𝑡,𝜆 ((𝑏, 𝜁 ), (∇𝑡𝑏, 𝜕𝑡𝜁 )) + (∇𝑡

˜𝑄𝑡,𝜆) (𝑏, 𝜁 ) + ∇𝑡𝑒𝑡,𝜆 = 0.

Since ∥2
˜𝑄𝑡,𝜆 (𝑏, ·)∥𝔜𝑡,𝜆

⩽ 1

2
∥ · ∥𝔜𝑡,𝜆

and ∥(∇𝑡
˜𝑄𝑡,𝜆) (𝑏, 𝜁 ) + ∇𝑡𝑒𝑡,𝜆 ∥𝔜𝑡,𝜆

⩽ 𝑐𝜆2−𝛼
, it follows that

∥(∇𝑡𝑏, 𝜕𝑡𝜁 )∥𝔜𝑡,𝜆
⩽ 𝑐𝜆2−𝛼

. This implies the desired estimates on (𝑎, 𝜂) = L−1

𝑡,𝜆
(𝑏, 𝜁 ) and its derivative

by Proposition 8.1. □
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The problem of finding
¯𝐴𝜆 is now reduced to constructing a continuous function 𝑡 : [0,Λ] →

(−𝑇 ′,𝑇 ′) such that 𝑡 (0) = 0 and

𝜇 (𝑡 (𝜆)) + 𝜂 (𝑡 (𝜆), 𝜆) = 0

for 𝑡 ∈ (0,Λ]. Since 𝜇 (0) = 0 and 𝜕𝑡𝜇 (0) ≠ 0, we can invert 𝜇 locally around 𝑡 = 0 and rewrite this

equation as

(10.6) �̃� (𝜆) + 𝜂 (𝜇−1 ◦ �̃� (𝜆), 𝜆) = 0

with �̃� = 𝜇 ◦ 𝑡 . Because |𝜂 | + |𝜕𝑡𝜂 | ⩽ 𝑐𝜆1−𝛼
, this equation on the other hand can immediately be

solved for �̃� and thus 𝑡 = 𝜇−1 ◦ �̃� by appealing to Lemma 10.3.

Remark 10.7. If we assume the situation of Remark 4.14, that is, 𝜇 is just monotone (but possibly

𝜕𝑡𝜇 (0) = 0), then one can still find a continuous inverse 𝜇−1
find solutions of (10.6) using Brouwer’s

fixed point theorem. However, these solutions might not be described by the graph of a function;

e.g., if 𝜇 (𝑡) = 𝑡3
and 𝜂 (𝑡, 𝜆) = −𝑡𝜆2

, then the set of solutions of 𝜇 (𝑡) +𝜂 (𝑡, 𝜆) = 0 is a union of three

graphs: 𝑡 = 0 and 𝑡 = ±𝜆.
The resulting connection𝐴𝜆 := �̃�𝑡 (𝜆),𝜆 will be smooth by elliptic regularity. That𝐴𝜆 converges

to 𝐵0 on the complement of 𝑃0 and that at each point 𝑥 ∈ 𝑃0 an ASD instanton in the equivalence

class of ℑ(𝑥) bubbles off transversely is clear, since we constructed 𝐴𝑡,𝜆 accordingly and
¯𝐴𝜆 is a

small perturbation of 𝐴𝑡,𝜆 . This concludes the proof of Theorem 1.2. □

References

[Bre03] S. Brendle. Complex anti-self-dual instantons and Cayley submanifolds. 2003. arXiv:
math/0302094v2 (cit. on p. 3).

[Bry87] R. L. Bryant. Metrics with exceptional holonomy. Annals of Mathematics 126.3 (1987),
pp. 525–576. doi: 10.2307/1971360. MR: 916718. Zbl: 0637.53042 (cit. on p. 4).

[BS89] R. L. Bryant and S. M. Salamon. On the construction of some complete metrics with
exceptional holonomy. Duke Mathematical Journal 58.3 (1989), pp. 829–850. doi:

10.1215/S0012-7094-89-05839-0. MR: 1016448 (cit. on p. 4).

[CHNP15] A. Corti, M. Haskins, J. Nordström, and T. Pacini. 𝐺2–manifolds and associative
submanifolds via semi-Fano 3–folds. Duke Mathematical Journal 164.10 (2015), pp. 1971–

2092. doi: 10.1215/00127094-3120743. MR: 3369307. Zbl: 06486366 (cit. on pp. 4,

6).

[DK90] S. K. Donaldson and P. B. Kronheimer. The geometry of four-manifolds. Oxford

Mathematical Monographs. Oxford Science Publications. New York, 1990, pp. x+440.

MR: MR1079726. Zbl: 0904.57001 (cit. on pp. 9, 34).

35

http://arxiv.org/abs/math/0302094v2
https://doi.org/10.2307/1971360
http://www.ams.org/mathscinet-getitem?mr=MR916718
http://zbmath.org/?q=an:0637.53042
https://doi.org/10.1215/S0012-7094-89-05839-0
http://www.ams.org/mathscinet-getitem?mr=MR1016448
https://doi.org/10.1215/00127094-3120743
http://www.ams.org/mathscinet-getitem?mr=MR3369307
http://zbmath.org/?q=an:06486366
http://www.ams.org/mathscinet-getitem?mr=MRMR1079726
http://zbmath.org/?q=an:0904.57001


[DS11] S. K. Donaldson and E. P. Segal. Gauge theory in higher dimensions, II. Surveys in
differential geometry. Volume XVI. Geometry of special holonomy and related topics.
Vol. 16. 2011, pp. 1–41. arXiv: 0902.3239. MR: 2893675. Zbl: 1256.53038 (cit. on

pp. 2, 3, 10, 11).

[DT98] S. K. Donaldson and R. P. Thomas. Gauge theory in higher dimensions. The geometric
universe (Oxford, 1996). Oxford, 1998, pp. 31–47. MR: MR1634503. Zbl: 0926.58003.
url: http://www.ma.ic.ac.uk/~rpwt/skd.pdf (cit. on pp. 1, 5).

[FG82] M. Fernández and A. Gray. Riemannian manifolds with structure group 𝐺2. Ann. Mat.
Pura Appl. (4) 132 (1982), 19–45 (1983). doi: 10.1007/BF01760975. MR: 696037. Zbl:
0524.53023 (cit. on p. 4).

[Hay12] A. Haydys. Gauge theory, calibrated geometry and harmonic spinors. Journal of the
London Mathematical Society 86.2 (2012), pp. 482–498. doi: 10.1112/jlms/jds008.
arXiv: 0902.3738. MR: 2980921. Zbl: 1256.81080 (cit. on pp. 10, 11).

[HL82] R. Harvey and H. B. Lawson Jr. Calibrated geometries. Acta Math. 148 (1982), pp. 47–157.
doi: 10.1007/BF02392726. MR: MR666108. Zbl: 0584.53021 (cit. on p. 6).

[HW15] A. Haydys and T. Walpuski. A compactness theorem for the Seiberg–Witten equation
with multiple spinors in dimension three. Geometric and Functional Analysis 25.6 (2015),
pp. 1799–1821. doi: 10.1007/s00039-015-0346-3. arXiv: 1406.5683. MR: 3432158.
Zbl: 1334.53039 (cit. on p. 3).

[Joy00] D. D. Joyce. Compact manifolds with special holonomy. Oxford Mathematical Mono-

graphs. Oxford, 2000, pp. xii+436. MR: 1787733. Zbl: 1027.53052 (cit. on p. 3).

[Joy96] D. D. Joyce. Compact Riemannian 7–manifolds with holonomy 𝐺2. I. Journal of
Differential Geometry 43.2 (1996), pp. 291–328. doi: 10.4310/jdg/1214458109. MR:

MR1424428. Zbl: 0861.53022 (cit. on pp. 4, 6).

[KL11] A. Kovalev and N.-H. Lee. 𝐾3 surfaces with non-symplectic involution and compact
irreducible 𝐺2–manifolds. Mathematical Proceedings of the Cambridge Philosophical
Society 151.2 (2011), pp. 193–218. doi: 10.1017/S030500411100003X. MR: 2823130.
Zbl: 1228.53064 (cit. on p. 4).

[Kov03] A. Kovalev. Twisted connected sums and special Riemannian holonomy. Journal für
die Reine und Angewandte Mathematik 565 (2003), pp. 125–160. doi: 10.1515/crll.
2003.097. MR: MR2024648. Zbl: 1043.53041 (cit. on p. 4).

[Lew98] C. Lewis. Spin(7) instantons. 1998 (cit. on p. 3).

[McL98] R. C. McLean. Deformations of calibrated submanifolds. Communications in Analysis
and Geometry 6.4 (1998), pp. 705–747. MR: 1664890. Zbl: 0929.53027 (cit. on p. 7).

[Nak88] H. Nakajima. Compactness of the moduli space of Yang–Mills connections in higher
dimensions. Journal of the Mathematical Society of Japan 40.3 (1988), pp. 383–392. doi:

10.2969/jmsj/04030383. MR: 945342 (cit. on p. 2).

36

http://arxiv.org/abs/0902.3239
http://www.ams.org/mathscinet-getitem?mr=MR2893675
http://zbmath.org/?q=an:1256.53038
http://www.ams.org/mathscinet-getitem?mr=MRMR1634503
http://zbmath.org/?q=an:0926.58003
http://www.ma.ic.ac.uk/~rpwt/skd.pdf
https://doi.org/10.1007/BF01760975
http://www.ams.org/mathscinet-getitem?mr=MR696037
http://zbmath.org/?q=an:0524.53023
https://doi.org/10.1112/jlms/jds008
http://arxiv.org/abs/0902.3738
http://www.ams.org/mathscinet-getitem?mr=MR2980921
http://zbmath.org/?q=an:1256.81080
https://doi.org/10.1007/BF02392726
http://www.ams.org/mathscinet-getitem?mr=MRMR666108
http://zbmath.org/?q=an:0584.53021
https://doi.org/10.1007/s00039-015-0346-3
http://arxiv.org/abs/1406.5683
http://www.ams.org/mathscinet-getitem?mr=MR3432158
http://zbmath.org/?q=an:1334.53039
http://www.ams.org/mathscinet-getitem?mr=MR1787733
http://zbmath.org/?q=an:1027.53052
https://doi.org/10.4310/jdg/1214458109
http://www.ams.org/mathscinet-getitem?mr=MRMR1424428
http://zbmath.org/?q=an:0861.53022
https://doi.org/10.1017/S030500411100003X
http://www.ams.org/mathscinet-getitem?mr=MR2823130
http://zbmath.org/?q=an:1228.53064
https://doi.org/10.1515/crll.2003.097
https://doi.org/10.1515/crll.2003.097
http://www.ams.org/mathscinet-getitem?mr=MRMR2024648
http://zbmath.org/?q=an:1043.53041
http://www.ams.org/mathscinet-getitem?mr=MR1664890
http://zbmath.org/?q=an:0929.53027
https://doi.org/10.2969/jmsj/04030383
http://www.ams.org/mathscinet-getitem?mr=MR945342


[Nak90] H. Nakajima.Moduli spaces of anti-self-dual connections on ALE gravitational instantons.
Invent. Math. 102.2 (1990), pp. 267–303. doi: 10.1007/BF01233429. MR: 1074476
(cit. on p. 8).

[NW73] L. Nirenberg and H. F. Walker. The null spaces of elliptic partial differential operators
in R𝔰𝔭𝑛. J. Math. Anal. Appl. 42 (1973). Collection of articles dedicated to Salomon

Bochner, pp. 271–301. MR: MR0320821 (cit. on p. 24).

[PR03] F. Pacard and M. Ritoré. From constant mean curvature hypersurfaces to the gradient
theory of phase transitions. Journal of Differential Geometry 64.3 (2003), pp. 359–423.

MR: 2032110. url: http://projecteuclid.org/getRecord?id=euclid.jdg/
1090426999 (cit. on p. 3).

[Pri83] P. Price. A monotonicity formula for Yang–Mills fields. Manuscripta Math. 43.2-3 (1983),
pp. 131–166. doi: 10.1007/BF01165828. MR: MR707042 (cit. on p. 2).

[SW15] H. N. Sá Earp and T. Walpuski. 𝐺2–instantons over twisted connected sums. Geometry
and Topology 19.3 (2015), pp. 1263–1285. doi: 10.2140/gt.2015.19.1263. arXiv:
1310.7933. MR: 3352236. Zbl: 06441803 (cit. on p. 5).

[SW17] D. A Salamon and T. Walpuski. Notes on the octonions. Proceedings of the 23rd Gökova
Geometry–Topology Conference. 2017, pp. 1–85. arXiv: 1005.2820. MR: 3676083. Zbl:
06810387 (cit. on p. 4).

[Tau82] C. H. Taubes. Self-dual Yang–Mills connections on non-self-dual 4–manifolds. Journal
of Differential Geometry 17.1 (1982), pp. 139–170. MR: MR658473. url: http : / /
projecteuclid.org/getRecord?id=euclid.jdg/1214436701 (cit. on p. 8).

[Tau83] C. H. Taubes. Stability in Yang–Mills theories. Communications in Mathematical
Physics 91.2 (1983), pp. 235–263. MR: MR723549. url: http://projecteuclid.org/
getRecord?id=euclid.cmp/1103940531 (cit. on p. 8).

[Tia00] G. Tian. Gauge theory and calibrated geometry. I. Annals of Mathematics 151.1 (2000),
pp. 193–268. doi: 10.2307/121116. arXiv: math/0010015. MR: MR1745014. Zbl:

0957.58013 (cit. on p. 2).

[TT04] T. Tao and G. Tian. A singularity removal theorem for Yang–Mills fields in higher
dimensions. Journal of the American Mathematical Society 17.3 (2004), pp. 557–593.

doi: 10.1090/S0894-0347-04-00457-6. arXiv: math/0209352. MR: 2053951. Zbl:
1086.53043 (cit. on p. 2).

[Uhl82a] K. K. Uhlenbeck. Connections with 𝐿𝑝 bounds on curvature. Communications in Mathe-
matical Physics 83.1 (1982), pp. 31–42. MR: MR648356. url: http://projecteuclid.
org/getRecord?id=euclid.cmp/1103920743 (cit. on p. 2).

[Uhl82b] K. K. Uhlenbeck. Removable singularities in Yang–Mills fields. Communications in Math-
ematical Physics 83.1 (1982), pp. 11–29. MR: MR648355. url: http://projecteuclid.
org/getRecord?id=euclid.cmp/1103920742 (cit. on p. 8).

37

https://doi.org/10.1007/BF01233429
http://www.ams.org/mathscinet-getitem?mr=MR1074476
http://www.ams.org/mathscinet-getitem?mr=MRMR0320821
http://www.ams.org/mathscinet-getitem?mr=MR2032110
http://projecteuclid.org/getRecord?id=euclid.jdg/1090426999
http://projecteuclid.org/getRecord?id=euclid.jdg/1090426999
https://doi.org/10.1007/BF01165828
http://www.ams.org/mathscinet-getitem?mr=MRMR707042
https://doi.org/10.2140/gt.2015.19.1263
http://arxiv.org/abs/1310.7933
http://www.ams.org/mathscinet-getitem?mr=MR3352236
http://zbmath.org/?q=an:06441803
http://arxiv.org/abs/1005.2820
http://www.ams.org/mathscinet-getitem?mr=MR3676083
http://zbmath.org/?q=an:06810387
http://www.ams.org/mathscinet-getitem?mr=MRMR658473
http://projecteuclid.org/getRecord?id=euclid.jdg/1214436701
http://projecteuclid.org/getRecord?id=euclid.jdg/1214436701
http://www.ams.org/mathscinet-getitem?mr=MRMR723549
http://projecteuclid.org/getRecord?id=euclid.cmp/1103940531
http://projecteuclid.org/getRecord?id=euclid.cmp/1103940531
https://doi.org/10.2307/121116
http://arxiv.org/abs/math/0010015
http://www.ams.org/mathscinet-getitem?mr=MRMR1745014
http://zbmath.org/?q=an:0957.58013
https://doi.org/10.1090/S0894-0347-04-00457-6
http://arxiv.org/abs/math/0209352
http://www.ams.org/mathscinet-getitem?mr=MR2053951
http://zbmath.org/?q=an:1086.53043
http://www.ams.org/mathscinet-getitem?mr=MRMR648356
http://projecteuclid.org/getRecord?id=euclid.cmp/1103920743
http://projecteuclid.org/getRecord?id=euclid.cmp/1103920743
http://www.ams.org/mathscinet-getitem?mr=MRMR648355
http://projecteuclid.org/getRecord?id=euclid.cmp/1103920742
http://projecteuclid.org/getRecord?id=euclid.cmp/1103920742


[Wal13a] T. Walpuski. 𝐺2–instantons on generalised Kummer constructions. Geometry and
Topology 17.4 (2013), pp. 2345–2388. doi: 10.2140/gt.2013.17.2345. arXiv:

1109.6609. MR: 3110581. Zbl: 1278.53051 (cit. on pp. 3, 5, 8, 24).

[Wal13b] T. Walpuski. Gauge theory on 𝐺2–manifolds. Imperial College London, 2013. url:

https://spiral.imperial.ac.uk/bitstream/10044/1/14365/1/Walpuski-T-
2013-PhD-Thesis.pdf (cit. on p. 3).

[Wal15] T. Walpuski. 𝐺2–instantons over twisted connected sums: an example. Mathmatical
Research Letters 23.2 (2015), pp. 529–544. doi: 10.4310/MRL.2016.v23.n2.a11.
arXiv: 1505.01080. Zbl: 06609380 (cit. on p. 5).

[Wal16] T. Walpuski. Spin(7)–instantons, Cayley submanifolds, and Fueter sections. Commu-
nications in Mathematical Physics 352.1 (2016), pp. 1–36. doi: 10.1007/s00220-016-
2724-6. arXiv: 1409.6705 (cit. on p. 3).

38

https://doi.org/10.2140/gt.2013.17.2345
http://arxiv.org/abs/1109.6609
http://www.ams.org/mathscinet-getitem?mr=MR3110581
http://zbmath.org/?q=an:1278.53051
https://spiral.imperial.ac.uk/bitstream/10044/1/14365/1/Walpuski-T-2013-PhD-Thesis.pdf
https://spiral.imperial.ac.uk/bitstream/10044/1/14365/1/Walpuski-T-2013-PhD-Thesis.pdf
https://doi.org/10.4310/MRL.2016.v23.n2.a11
http://arxiv.org/abs/1505.01080
http://zbmath.org/?q=an:06609380
https://doi.org/10.1007/s00220-016-2724-6
https://doi.org/10.1007/s00220-016-2724-6
http://arxiv.org/abs/1409.6705

	Introduction
	Review of geometry on G2–manifolds
	Gauge theory on G2–manifolds
	Associative submanifolds in G2–manifolds

	Moduli spaces of ASD instantons over R4
	Fueter sections of instanton moduli bundles
	Pregluing construction
	Weighted Hölder norms
	Pregluing estimate
	Linear estimates
	The model operator on R7
	Schauder estimate
	Estimate of ...
	Comparison with F
	Cross-term estimates
	Proof of Proposition 8.4
	Proof of Proposition 8.6

	Quadratic estimate
	Conclusion of the proof of Theorem 1.2
	References

